10111CE701-DESIGN OF RC AND BRICK MASONRY STRUCTURES

E-LEARNING MATERIAL

BY,
S.GOVINDARAJAN B.E.,M.E.,(Ph.D)

ASSISTANT PROFESSOR
DEPARTMENT OF CIVIL ENGINEERING
NPR COLLEGE OF ENGINEERING \& TECHNOLOGY

10111CE701

DESIGN OF REINFORCED CONCRETE \& BRICK MASONRY STRUCTURES LTPC3104 OBJECTIVE

This course covers the design of Reinforced Concrete Structures such as Retaining Wall, Water Tanks, Staircases, Flat slabs and Principles of design pertaining to Box culverts, Mat foundation and Bridges. At the end of the course student has a comprehensive design knowledge related to structures, systems that are likely to be encountered in professional practice.

UNIT I RETAINING WALLS 12

Design of cantilever and counter fort retaining walls
UNIT II WATER TANKS 12
Underground rectangular tanks - Domes - Overhead circular and rectangular tanks Design of staging and foundations

UNIT III SELECTED TOPICS 12

Design of staircases (ordinary and doglegged) - Design of flat slabs - Design of Reinforced concrete walls - Principles of design of mat foundation, box culvert and road bridges

UNIT IV

YIELD LINE THEORY

Application of virtual work method to square, rectangular, circular and triangular slabs UNIT V

BRICK MASONRY
Introduction, Classification of walls, Lateral supports and stability, effective height of wall and columns, effective length of walls, design loads, load dispersion, permissible stresses, design of axially and eccentrically loaded brick walls

L : 45 , T : 15 TOTAL: 60 PERIODS

TEXT BOOKS

1. Krishna Raju, N., "Design of RC Structures", CBS Publishers and Distributors, Delhi, 2006
2. Dayaratnam, P., "Brick and Reinforced Brick Structures", Oxford \& IBH Publishing House, 1997
3. Varghese, P.C., "Limit State Design of Reinforced Concrete Structures "Prentice hall of India Pvt Ltd New Delhi, 2007.

REFERENCES

1. Mallick, D.K. and Gupta A.P., "Reinforced Concrete", Oxford and IBH Publishing Company
2. Syal, I.C. and Goel, A.K., "Reinforced Concrete Structures", A.H. Wheelers \& Co. Pvt. Ltd., 1994
3. Ram Chandra.N. and Virendra Gehlot, "Limit State Design", Standard Book House. 2004.

UNIT I

RETAINING WALL

Retaining wall - Retains Earth - when level difference exists between two surfaces
A) Gravity wall (h<3m) - Masonry or Stone

(a) gravity wall

(b) cantilever wall
B) Cantilever wall ($h>3 m$ and $h<6 m$)
C) Counterfort wall ($\mathrm{h}>8 \mathrm{~m}$)

D) Buttress wall [Transverse stem support provided on front side]

Stability - Overturning and Sliding - Avoided by providing sufficient base width.

Earth pressure and stability requirements:

Forces acting on a cantilever retaining wall
Pressure, $\quad P=C \gamma_{e} Z$
Where, $\mathbf{Z}=$ depth, $\gamma_{e}=$ Unit weight
$C_{a}=\frac{1-\operatorname{Sin} \phi}{1+\operatorname{Sin} \phi} ;$
$C p=\frac{1+\operatorname{Sin} \phi}{1-\operatorname{Sin} \phi}$

Always, $\mathrm{Cp}>\mathrm{Ca}$.
Eg: If $\phi=30^{\circ}, \mathrm{Ca}=1 / 3$ and $\mathrm{Cp}=3$.
In sloped backfill,

$$
\mathrm{C}_{\mathrm{a}}=\left[\frac{\operatorname{Cos} \theta-\sqrt{\operatorname{Cos}^{2} \theta-\operatorname{Cos}^{2} \phi}}{\operatorname{Cos} \theta+\sqrt{\operatorname{Cos}^{2} \theta-\operatorname{Cos}^{2} \phi}}\right] \operatorname{Cos} \theta ; \quad C p=\frac{1+\operatorname{Sin} \phi}{1-\operatorname{Sin} \phi}
$$

1. Effect of surcharge on level backfill:

$\mathrm{P}_{\mathrm{a}}=\mathrm{P}_{\mathrm{a} 1}+\mathrm{P}_{\mathrm{a} 2}$, where,

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{a} 1}=\mathrm{C}_{\mathrm{a}} \cdot \mathrm{~W}_{\mathrm{s}} \cdot \mathrm{~h}=\mathrm{C}_{\mathrm{a}} \cdot \mathrm{Y}_{\mathrm{e}} \cdot \mathrm{~h}_{\mathrm{s}} \cdot \mathrm{~h} \& \\
& \mathrm{P}_{\mathrm{a} 2}=\mathrm{Ca} \cdot \mathrm{Y}_{\mathrm{e}} \cdot \mathrm{~h}^{2} / 2
\end{aligned}
$$

[h/2 above heel]
[$\mathrm{h} / 3$ above heel]
Note : Purpose of retaining wall is to retain earth and not water. Therefore, submerged condition should be avoided by providing and maintaining proper drainage facilities [including provision of weep holes].
2. Effect of water in the backfill:

Effect of water in the backfill

Stability requirements FOS against $\frac{\text { Overtuning }}{\text { Sliding }} \geq 1.4$
i) Overturning:

$$
\mathrm{FOS}_{\text {overturning }}=\frac{0.9 M r}{M o} \geq 1.4
$$

a) For sloping backfill, $\mathrm{M}_{0}=\left(\mathrm{P}_{\mathrm{a}} \cdot \operatorname{Cos} \theta\right) \cdot \frac{h^{\prime}}{3}=\mathrm{C}_{\mathrm{a}} \cdot \gamma_{e} \cdot \frac{\mathrm{~h}^{\prime 3}}{6} \cdot \operatorname{Cos} \theta$

$$
\mathrm{Mr}=\mathrm{W}\left(\mathrm{~L}-\mathrm{X}_{\mathrm{w}}\right)+\left(\mathrm{P}_{\mathrm{a}} \cdot \operatorname{Sin} \theta\right) \cdot \mathrm{L}
$$

b) For level backfill [with surcharge, $\mathrm{M}_{0}=\left(\mathrm{P}_{\mathrm{a} 1}(\mathrm{~h} / 2)+\left(\mathrm{P}_{\mathrm{a} 2}(\mathrm{~h} / 3)\right.\right.$.

$$
\mathrm{Mr}=\mathrm{W}\left(\mathrm{~L}-\mathrm{X}_{\mathrm{w}}\right) \quad\left[\text { as } \theta=0^{\circ}\right]
$$

ii) Sliding: [Friction between base slab and supporting soil]

$$
\mathrm{F}=\mu \cdot \mathrm{R} \quad[\text { where }, \mathrm{R}=\mathrm{W}]
$$

R-> Resultant soil pressure at footing base
μ-> Coefficient of static friction [0.35 - Silt \& 0.60 - Rough rock]

$$
\text { FOS }_{\text {sliding }}=\frac{0.9 F}{P_{a} \operatorname{Cos} \theta} \geq 1.4
$$

When P_{a} is very high, shear key projection can be provided below footing base [Produces passive resistance $P_{p s}$, which is generally neglected, otherwise].

Sliding is reduced by providing shear key [like a plug, anchors inside]

Passive resistance due to shear key

$$
P_{p s}=C \gamma_{e}\left(h_{2}{ }^{2}-h_{1}^{2}\right) / 2
$$

$X_{\text {sk }}->$ Flexural reinforcement from stem is extended straight into shear key near the toe.

Note: For economical design, soil pressure resultant(R) must be in line with front face of wall.

Preliminary proportioning of cantilever retaining wall:

1. The thickness of base slab is $\mathrm{h} / 12$ or 8% of the height of wall + surcharge.
2. The base thickness of stem should be greater than the thickness of base slab
3. The top thickness of stem should not be less than 150 mm .
4. Clear cover for stem is 50 mm and base slab is 75 mm
5. Minimum length of base slab is given by

$$
L_{\min }=\left(\sqrt{\frac{C_{a}}{3}}\right) \frac{h^{\prime}}{\alpha_{R}}
$$

where, $\alpha_{R}=$ Coefficient depending on the pressure distribution $\alpha_{R}=0.5$ for rectangular pressure distribution \& 0.67 for trapezoidal pr.dist.
6. Minimum length of heel slab is given by

$$
X=\left(\sqrt{\frac{C_{a}}{3}}\right) h^{\prime}
$$

Notes:

1. The critical section for moment is at front face of stem.
2. The critical section for shear is at 'd' from face of stem.
3. The stem, heel and toe slabs are designed as cantilever slabs for the resultant pressure.
4. Temperature and shrinkage reinforcement is provided as 0.12% of cross section along the transverse direction to the main reinforcement and front face of the stem.
1) Determine suitable dimensions of a cantilever retaining wall, which is required to support a bank of earth 4.0 m high above ground level on the toe side of the wall. Consider the backfill surface to be inclined at an angle of 15° with the horizontal. Assume good soil for foundation at a depth of 1.25 m below ground level with SBC of $160 \mathrm{kN} / \mathrm{m}^{2}$. Further assume the backfill to comprise of granular soil with unit weight of $16 \mathrm{kN} / \mathrm{m}^{3}$ and an angle of shearing resistance of 30°. Assume the coefficient of friction between soil and concrete to be 0.5 .

Given: $\mathrm{h}=4.0+1.25 \mathrm{~m}$
$\theta=15^{\circ}$
d $=30^{\circ}$
$\gamma_{e}=16 \mathrm{kN} / \mathrm{m}^{3}$
$\mathrm{q}_{\mathrm{a}}=160 \mathrm{kN} / \mathrm{m}^{2}$
$\mu=0.5$
Minimum depth of foundation (Rankine's),

$$
\mathrm{d}_{\mathrm{m}}=\frac{q_{a}}{\gamma_{e}}\left(\frac{1-\sin \phi}{1+\sin \phi}\right)^{2}=\frac{160}{16}\left(\frac{1}{3}\right)^{2}=1.11 \mathrm{~m}
$$

Earth pressure coefficient,
$\mathrm{C}_{\mathrm{a}}=\left[\frac{\operatorname{Cos} \theta-\sqrt{\operatorname{Cos}^{2} \theta-\operatorname{Cos}^{2} \phi}}{\operatorname{Cos} \theta+\sqrt{\operatorname{Cos}^{2} \theta-\operatorname{Cos}^{2} \phi}}\right] \operatorname{Cos} \theta=0.373$
$C p=\frac{1+\operatorname{Sin} \phi}{1-\operatorname{Sin} \phi} \quad=3.0$
Preliminary proportioning:
Thickness of footing base slab $=0.08 \mathrm{~h}=0.08 \times 5.25=0.42 \mathrm{~m}$
Provide a base thickness of 420 mm for base slab.
Assume stem thickness of 450 mm at base of stem tapering to 150 mm at top of wall.
For economical proportioning of length 'L', assume vertical reaction R at the footing base to be in line with front face of the stem.

$$
X=\left(\sqrt{\frac{C_{a}}{3}}\right) h^{\prime}=\sqrt{\frac{0.373}{3}}(5.25+0.4) \quad=2.0 \mathrm{~m} \quad[\text { where } 0.4 \mathrm{~m} \text { is assumed as }
$$

height above wall]
Assuming a triangular base pressure distribution,

$$
\mathrm{L}=1.5 \mathrm{X}=3.0 \mathrm{~m}
$$

Preliminary proportions are shown in figure.
For the assumed proportions, the retaining wall is checked for stability against overturning and sliding.

Stability against overturning:

Force ID	Force (kN)	Distance from heel (m)	Moment (kNm)
W1	$16(1.85)(5.25-0.42)=143.0$	0.925	132.3
W2	$16(1.85)(0.5 \times 0.536)=7.9$	$\left[2 \tan 15^{\circ}=0.536\right]$	0.617
W3	$25(0.15)(5.25-0.42)=18.1$	1.925	4.9
W4	$(25-16)(4.83)(0.5 \times 0.3)=6.5$	1.75	34.8
W5	$25(3)(0.42)=31.5$	1.50	11.4
PaSin	25.9	0	47.2
Total	$\mathbf{W}=\mathbf{2 3 2 . 9}$		$\mathbf{M w = 2 3 0 . 6}$

$\mathrm{Pa}=$ Active pressure exerted by retained earth on wall [both wall and earth move in same direction]
$\mathrm{Pp}=$ Passive pressure exerted by wall on retained earth [both move in opposite direction]

Ca -> same for dry and submerged condition, since \varnothing for granular soil does not change significantly.

Force due to active pressure,

$$
\begin{aligned}
& P_{\mathrm{a}}=\begin{array}{l}
\text { Ca. Ye. } \mathrm{h}^{\prime 2} / 2 \\
\text { Where, } \quad \mathrm{h}^{\prime}
\end{array}=\mathrm{h}+\mathrm{Xtan} \theta \\
& \\
& \\
& =5250+2000 \tan 15^{\circ}=5786 \mathrm{~mm} \\
& \\
& \begin{aligned}
\mathrm{P}_{\mathrm{a}}=0.373(16)(5.786)^{2} / 2=99.9 \mathrm{kN} \quad[\text { per } \mathrm{m} \text { length of wall] }
\end{aligned}
\end{aligned}
$$

FOS $=0.9 \times$ Stabilising force or moment ≥ 1.4 Destabilising force or moment

Therefore, $\mathrm{FOS}_{(\text {overturning })}=\frac{0.9 M r}{M o} \geq 1.4$
Overturning moment, $\mathrm{M}_{\mathrm{o}}=\left(\mathrm{P}_{\mathrm{a}} \operatorname{Cos} \theta\right) \mathrm{h}^{\prime} / 3=96.5(5.786 / 3)=186.1 \mathrm{kNm}$
To find the distance of resultant vertical force from heel,
Distance of resultant vertical force from heel,
$\mathrm{X}_{\mathrm{w}}=\mathrm{M}_{\mathrm{w}} / \mathrm{W}=230.6 / 232.9=0.99 \mathrm{~m}$
Stabilising moment (about toe),

$$
M_{r}=W\left(L-X_{w}\right)+P_{a} \operatorname{Sin} \theta(L)=232.9(3-0.99)+77.6
$$

$=468.1 \mathrm{kNm} \quad[\mathrm{per} \mathrm{m}$ length of wall]
$\mathrm{FOS}_{(\text {overturning })}=\frac{0.9 M r}{M o}=\frac{0.9 x(468.1+77.6)}{186.1}=2.26>1.40$
Soil pressure at footing base:
Resultant vertical reaction, $\mathrm{R}=\mathrm{W}=232.9 \mathrm{kN} \quad$ [per m length of wall]

calculation of soil pressures

Distance of R from heel, $L_{R}=\left(M_{w}+M_{0}\right) / R=(230.6+186.1) / 232.9=1.789 m$
Eccentricity, $e=L_{R}-L / 2=1.789-3 / 2=0.289 m<L / 6->[0.5 m]$
Hence the resultant lies within the middle third of the base, which is desirable.
Maximum pressure as base,
$q_{\max }=\frac{R}{L}\left(1+\frac{6 e}{L}\right)=\frac{232.9}{3}(1+0.578)=122.5 \mathrm{kN} / \mathrm{m}^{2}<q_{q} \quad\left[\right.$ where $\left.\mathrm{q}_{\mathrm{a}}=160 \mathrm{kN} / \mathrm{m}^{2}\right] \quad$ [Safe].
$q_{\min }=\frac{R}{L}\left(1-\frac{6 e}{L}\right)=\frac{232.9}{3}(1-0.578)=32.8 \mathrm{kN} / \mathrm{m}^{2}>0 \quad$ [No tension develops] \quad [Safe].

Stability against sliding:

Sliding force, $\mathrm{P}_{\mathrm{a}} \operatorname{Cos} \theta=96.5 \mathrm{kN}$
Resisting force, $\mathrm{F}=\mu \mathrm{R}=0.5 \times 232.9=116.4 \mathrm{kN}$
[lgnoring passive pressure on toe side]
FOS(Sliding) $=\frac{0.9 F}{P_{a} \operatorname{Cos} \theta}=\frac{0.9 \times 116.4}{96.5}=1.085<1.40 \quad$ [Not sufficient]
Hence a shear key may be provided.
Assume a shear key $300 \mathrm{~mm} \times 300 \mathrm{~mm}$ at a distance of 1300 mm from toe as shown in figure.

design of shear key

$h_{2}=950+300+1300 \tan 30^{\circ}=2001 \mathrm{~mm}$
$P p=C_{p} \cdot Y_{e} \cdot\left(h_{2}{ }^{2}-h_{1}{ }^{2}\right) / 2=3 \times 16 \times\left(2.001^{2}-0.950^{2}\right) / 2=74.11 \mathrm{kN}$.
FOS $_{(\text {Sliding })}=\frac{0.9(116.4+74.44)}{96.5}=1.78>1.4$
[SAFE]

Design of toe slab:

Assuming a clear cover of 75 mm and $16 \mathrm{~mm} \Phi$ used,

$$
\mathrm{d}=420-75-8=337 \mathrm{~mm}
$$

$\mathrm{V}_{\mathrm{u}}=1.5\left[\frac{112+81.9}{2}\right] x(1-0.337)=96.42 \mathrm{kN} \quad\left[\mathrm{V}_{\mathrm{u}}\right.$ is design shear at ' d ' from face of stem]
$M_{u}=1.5\left\{\left(81.9 \times 1^{2} / 2\right)+(112-81.9) \times 1 / 2 \times 1^{2} \times 2 / 3\right\}$
$=76.48 \mathrm{kNm} / \mathrm{m}$ length
Nominal shear stress, $\tau_{v}=\frac{V_{u}}{b d}=\frac{96.42 \times 10^{3}}{1000 \times 337}=0.286 \mathrm{~N} / \mathrm{mm}^{2}$
Using M20 concrete,
For a $\tau_{c}=0.29 \mathrm{~N} / \mathrm{mm}_{2}, \mathrm{p}_{\mathrm{t}}($ required $)=0.2 \%$
[Page 178, SP-16]
$\mathrm{K}=\frac{M_{u}}{b d^{2}}=\frac{76.48 \times 10^{6}}{1000 \times 337^{2}}=0.673 \mathrm{~N} / \mathrm{mm}^{2}$
[Page 48, SP-16]

For $p_{t}=0.2 \%, A_{s t}=0.2 / 100 \times 1000 \times 337=674 \mathrm{~mm}^{2} / \mathrm{m}$
Spacing $=\frac{1000 x \pi \times 16^{2} / 4}{674}=298 \mathrm{~mm}$
Provide $16 \mathrm{~mm} \phi$ @ 290mm c/c at bottom of toe slab
$\mathrm{Ld}=\frac{\phi \sigma_{s}}{4 \tau_{b d}}=\frac{(16) \cdot 0 \cdot 87 f_{y}}{4 \tau_{b d}}=16 \times 47=752 \mathrm{~mm}$, beyond face of stem.
Since length available is 1 m , no curtailment is sorted.

Design of heel slab:

$\mathrm{V}_{\mathrm{u}}=1.5\left[\frac{82.54+128.6}{2}\right] x(1.55-0.337)=128.06 \mathrm{kN}$
$M_{u}=1.5\left\{\left(82.54 \times 1.55^{2} / 2\right)+(128.6-82.54) \times 1 / 2 \times 1.55^{2} \times 2 / 3\right\}$
$=203.96 \mathrm{kNm} / \mathrm{m}$ length
Nominal shear stress, $\tau_{v}=\frac{V_{u}}{b d}=\frac{128.06 \times 10^{3}}{1000 \times 337}=0.38 \mathrm{~N} / \mathrm{mm}^{2}$
Using M20 concrete,
For a $\tau_{c}=0.39 \mathrm{~N} / \mathrm{mm}_{2}, \mathrm{p}_{\mathrm{t}}($ required $)=0.3 \%$
[Page 178, SP-16]
$\mathrm{K}=\frac{M_{u}}{b d^{2}}=\frac{203.96 \times 10^{6}}{1000 \times 337^{2}}=1.8 \mathrm{~N} / \mathrm{mm}^{2}$ [Page 48, SP-16]

For $p_{t}=0.565 \%, A_{s t}=0.565 / 100 \times 1000 \times 337=1904.05 \mathrm{~mm}^{2} / \mathrm{m}$

Spacing $=\frac{1000 x \pi \times 16^{2} / 4}{1904.05}=105.61 \mathrm{~mm}$
Provide $16 \mathrm{~mm} \phi$ @ $100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ at bottom of toe slab
$\mathrm{L}_{\mathrm{d}}=\frac{\phi \sigma_{s}}{4 \tau_{b d}}=\frac{(16) \cdot 0 \cdot 87 f_{y}}{4 \tau_{b d}}=16 \times 47=752 \mathrm{~mm}$, beyond face of stem.
Since length available is 1.55 m , no curtailment is sorted.

Design of vertical stem:

Height of cantilever above base $=5250-420=4830 \mathrm{~mm}$
Assume a clear cover of 50 mm and $16 \mathrm{~mm} \Phi$ bar,
$d_{\text {at base }}=450-50-16 / 2=392 \mathrm{~mm}$
$M_{u}=1.5\left(C_{a} \cdot Y_{e} \cdot h^{3} / 6\right)=1.5(1 / 3)\left(16 \times 4.92^{3} / 6\right)=150.24 \mathrm{kNm}$.
$\mathrm{K}=\frac{M u}{b d^{2}}=\frac{150.24 \times 10^{6}}{1000 \times 4.92^{2}}=1 \mathrm{~N} / \mathrm{mm}^{2}$.
$p_{t}=0.3 \%, A_{s t}=0.295 / 100 \times 1000 \times 392=1200 \mathrm{~mm} 2$.
Spacing $=1000 \times 201 / 1200=160 \mathrm{~mm}$
Provide $16 \mathrm{~mm} \phi$ @ $160 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ in the stem, extending into the shear key upto $47 \Phi=$ 752 mm .

Check for shear: [at ' d ' from base]
$\mathrm{V}_{\mathrm{u}}($ stem $)=1.5\left(\mathrm{C}_{\mathrm{a}} \cdot \mathrm{Y}_{\mathrm{e}} \cdot \mathrm{Z}^{2} / 2\right)=1.5\left(1 / 3 \times 16 \times(4.83-0.392)^{2} / 2\right)=53.83 \mathrm{kN}$
$\tau_{v}=\frac{V_{u}}{b d}=\frac{53.83 \times 10^{3}}{1000 \times 392}=0.135 \mathrm{~N} / \mathrm{mm}^{2}<\tau_{c} \quad\left[\right.$ where, $\zeta_{\mathrm{c}}=0.39 \mathrm{~N} / \mathrm{mm}^{2}$ for $\left.\mathrm{p}_{\mathrm{t}}=0.3 \%\right)$)
Hence, SAFE.

Curtailment of bars:

Curtailments of bars in stem are done in two stages:
At $1 / 3^{\text {rd }}$ and $2 / 3^{\text {rd }}$ height of the stem above base.
Temperature and shrinkage reinforcement:
$A_{\text {st }}=0.12 / 100 \times 10 \times 450=540 \mathrm{~mm}^{2}$

For I $1 / 3^{\text {rd }}$ height, provide $2 / 3^{\text {rd }}$ of bar near front face (exposed to weather) and $1 / 3^{\text {rd }}$ near rear face.

For II $1 / 3^{\text {rd }}$ height, provide $1 / 2$ the above.
For III $1 / 3^{\text {rd }}$ height, provide $1 / 3^{\text {rd }}$ of I case.
Provide nominal bars of 10 mm @ 300mm c/c vertically near front face.

Detailing of cantilever wall

DESIGN OF COUNTERFORT RETAINING WALL

(c) counterfort wall

Preliminary proportioning of counterfort retaining wall:

1. Thickness of heel slab and stem $=5 \%$ of Height of wall
2. Thickness of toe slab [buttress not provided] $=8 \%$ of Height of wall
3. Thickness of counterfort $=6 \%$ of height of wall
4. In no case thickness of any component be less than 300 mm .
5. Spacing of counterforts $=1 / 3^{\text {rd }}$ to $1 / 2$ of Height of wall
6. Each panel of stem and heel slab are designed as two way slab with one edge free (one way continuous slab).
7. The toe slab is designed as
a. Cantilever slab when buttress is not provided
b. One way continuous slab, when buttress is provided
8. Counterfort is a triangular shaped structure designed similar to a T-Beam as vertical cantilever with varying depth (stem acts as flange). The main reinforcement is along the sloping side. Stirrups are provided in the counterfort to secure them firmly with the stem. Additional ties are provided to securely tie the counterfort to the heel slab.
1) Design a suitable counterfort retaining wall to support a leveled backfill of height 7.5 m above ground level on the toe side. Assume good soil for the foundation at a depth of 1.5 m below ground level. The SBC of soil is $170 \mathrm{kN} / \mathrm{m}^{2}$ with unit weight as $16 \mathrm{kN} / \mathrm{m}^{3}$. The angle of internal friction is $\varphi=30^{\circ}$. The coefficient of friction between the soil and concrete is 0.5 . Use M25 concrete and Fe415 steel.

Minimum depth of foundation $=\frac{P}{\gamma}\left(\frac{1-\sin \varphi}{1+\sin \varphi}\right)^{2}=\frac{170}{16}\left(\frac{1-\sin 30}{1+\sin 30}\right)^{2}=1.181 m<1.5 m$
Depth of foundation $=1.5 \mathrm{~m}$
Height of wall $=7.5+1.5=9 \mathrm{~m}$
Thickness of heel and stem $=5 \%$ of $9 \mathrm{~m}=0.45 \mathrm{~m} \approx 0.5 \mathrm{~m}$
Thickness of toe slab $=8 \%$ of $9 \mathrm{~m}=0.72 \mathrm{~m}$
$X_{\text {min }}=\left(\sqrt{\frac{C_{a}}{3}}\right) h^{\prime}=\sqrt{\frac{0.333}{3}}(9) \quad=3.0 \mathrm{~m} \quad\left[\right.$ As $\left.\mathrm{C}_{\mathrm{a}}=1 / 3 \& \mathrm{C}_{\mathrm{p}}=3\right]$
$L_{\text {min }}=1.5 \times 3=4.5 \mathrm{~m}$
Thickness of counterfort $=6 \%$ of $9=0.54 \mathrm{~m}$

Stability conditions:
Earth pressure calculations:

Force ID	Force (kN)	Distance from heel (m)	Moment (kNm)
W1	$16(7.5+1.5-0.5)(2.5)=340$	$(3-0.5) / 2=1.25$	425
W2	$25(0.5)(9-0.5)=106.25$	$0.5 / 2+2.5=2.75$	292.18
W3	$25(0.5)(3)=37.5$	1.5	56.25
W4	$25(1.5)(0.72)=27$	$1.5 / 2+3=3.75$	101.25
Total	W $=510.75$		Mw $=874.69$

$X w=874.69 / 510.75=1.713 m$
FOS ${ }_{\text {(overturning) }}=0.9 \mathrm{M}_{\mathrm{r}} / \mathrm{M}_{0}$
Where, $\quad \mathrm{Mo}=\mathrm{P}_{\mathrm{a}} \cdot \mathrm{h} / 3=\mathrm{C}_{\mathrm{a}} \cdot \mathrm{Ye}_{\mathrm{e}} \cdot \mathrm{h}^{3} / 6=0.33 \times 16 \times 93 / 6=647.35 \mathrm{kNm}$.

$$
\mathrm{Mr}=(\mathrm{L}-\mathrm{Xw}) \cdot \mathrm{W}=510.75(4.5-1.713)=1423.6 \mathrm{kNm} .
$$

FOS $_{\text {(overturning) }}=1.98>1.4$
Hence, section is safe against overturning.
Sliding:
$\operatorname{FOS}_{(\text {sliding })}=0.9(\mu \mathrm{R}) / \mathrm{P}_{\mathrm{a}} \operatorname{Cos} \theta$
$\mathrm{F}=\mu \mathrm{R}=0.5 \times 510.75=255.375 \mathrm{kN}$
$P_{a}=C_{a} \cdot Y_{e} \cdot h^{2} / 2=215.784$

Base pressure calculation:
$q_{\max }=\frac{R}{L}\left(1+\frac{6 e}{L}\right)=\frac{510.75}{4.5}\left(1+\frac{6 x 0.73}{4.5}\right)=223.97 \mathrm{kN} / \mathrm{m}^{2}>q_{q} \quad\left[\right.$ where $\left.\mathrm{q}_{\mathrm{a}}=170 \mathrm{kN} / \mathrm{m}^{2}\right] \quad[$ UnSafe $]$.
$q_{\min }=\frac{R}{L}\left(1-\frac{6 e}{L}\right)=\frac{510.75}{4.5}\left(1-\frac{6 x 0.73}{4.5}\right)=3.027 \mathrm{kN} / \mathrm{m}^{2}>0 \quad$ [No tension develops] \quad [Safe].

Where, $L_{R}=\left(M+M_{0}\right) / R, e=L_{R}-L / 2$, where,
$L_{R}=(874.688+647.352) / 510.75=2.98 m$
$\& \mathrm{e}=\mathrm{L}_{\mathrm{R}}-\mathrm{L} / 2=2.98-(4.5 / 2)=0.73<\mathrm{L} / 6 \rightarrow(0.75 \mathrm{~m})$
Since the maximum earth pressure is greater than SBC of soil, the length of base slab has to be increased preferably along the toe side. Increase the toe slab by 0.5 m in length.
$\Sigma \mathrm{W}=510.75+0.5 \times 25 \times 0.72=519.75 \mathrm{kN}$

Additional load due to increase in toe slab by 0.5 m is,
Moment $=0.5 / 2+4.5=4.75 \mathrm{~m}$
$\sum \mathrm{M}=874.69+42.75=917.438 \mathrm{kNm}$.
$L_{R}=(M o+M) / R=(917.438+647.352) / 519.75=3.011 m$
$\mathrm{e}=\mathrm{L}_{\mathrm{R}}-\mathrm{L} / 2=3.011-(5 / 2)=0.511 \mathrm{~m}<\mathrm{L} / 6 \rightarrow(0.833 \mathrm{~m})$
$q_{\max }=\frac{R}{L}\left(1+\frac{6 e}{L}\right)=\frac{519.75}{5}\left(1+\frac{6 x 0.511}{5}\right)=166.32 \mathrm{kN} / \mathrm{m}^{2}<q_{q} \quad\left[\right.$ where $\left.\mathrm{q}_{\mathrm{a}}=170 \mathrm{kN} / \mathrm{m}^{2}\right] \quad$ [Safe].
$q_{\min }=\frac{R}{L}\left(1-\frac{6 e}{L}\right)=\frac{519.75}{5}\left(1-\frac{6 x 0.511}{5}\right)=41.58 \mathrm{kN} / \mathrm{m}^{2}>0 \quad$ [No tension develops] \quad [Safe].
$\mathrm{FOS}_{(\text {Sliding })}=0.9(\mu \mathrm{R}) / \mathrm{P}_{\mathrm{a}}=0.9(0.5 \times 519.75) / 215.784=1.08<1.4$.
Hence the section is not safe against sliding. Shear key is provided to resist sliding. Assume shear key of size $300 \times 300 \mathrm{~mm}$.

300 neglected

$P_{p s}=C_{p} \cdot Y_{e} \cdot\left(h 2^{2}-h 1^{2}\right) / 2=164.5 k N / m$
$\mathrm{FOS}_{(\text {sliding })}=0.9\left(\mu \mathrm{R}+\mathrm{P}_{\mathrm{ps}}\right) / \mathrm{P}_{\mathrm{a}}=1.77>1.4 \quad[$ where, $\mathrm{h} 1=1.2 \mathrm{~m}, \mathrm{~h} 2=1.2+0.3+1.39=2.88 \mathrm{~m}]$
Hence, section is safe in sliding with shear key $300 \times 300 \mathrm{~mm}$.

Net soil pressures acting on base slab

Design of Toe Slab:

Effective cover $=75+20 / 2=85 \mathrm{~mm}$
Toe slab is designed similar to cantilever slab with maximum moment at front face of the stem and maximum shear at'd' from front face of stem.
$\mathrm{d}=720-85=635 \mathrm{~mm}$.
$M=80.38 \times 2^{2} / 2+1 / 2 \times 2 \times 49.94 \times 2 / 3 \times 2=160.76+122.76=227.35 \mathrm{kNm}$.
SF at $0.635 \mathrm{~m},=49.94 / 2 \times 0.635=15.606 \mathrm{kN}$
Area of trapezoid $=1 / 2 . h .(a+b)=1 / 2(2-0.635)(130.32+95.98)=154.44 \mathrm{kN}$
Factored SF $=231.66 \mathrm{kN}$; Factored Moment $=341.02 \mathrm{kNm}$.
$K=M_{u} / b d^{2} \rightarrow A_{s t}=1551.25 \mathrm{~mm}^{2} \rightarrow$ Spacing $=1000 a_{\mathrm{st}} / A_{\text {st }} \rightarrow 16 \mathrm{~mm} @ 125 \mathrm{mmc} / \mathrm{c}$.
Transverse reinforcement: $=0.12 \%$ of c / s

$$
=0.12 / 100 \times 1000 \times 720=864 \mathrm{~mm}^{2}
$$

Provide 10mm @100mm c/c.

Design of heel slab:

The heel slab is designed as an one way continuous slab with moment $\mathrm{wl}^{2} / 12$ at the support and $\mathrm{wl}^{2} / 16$ at the midspan. The maximum shear at the support is $\mathrm{w}(\mathrm{l} / 2-\mathrm{d})$.

The maximum pressure at the heel slab is considered for the design.
Moment at the support, $\mathrm{M}_{\text {sup }}=\mathrm{wl}^{2} / 12=106.92 \times 2.5^{2} / 12=55.688 \mathrm{kNm}$.
Moment at the midspan, $\mathrm{M}_{\text {mid }}=\mathrm{wl}^{2} / 16=41.76 \mathrm{kNm}$
The maximum pressure acting on the heel slab is taken as ' w ' for which the $A_{\text {st }}$ required at midspan and support are found.

Factored $\mathrm{M}_{\text {sup }}=83.53 \mathrm{kNm} \rightarrow$ Ast $=570.7 \mathrm{~mm}^{2}$
Factored $\mathrm{M}_{\text {mid }}=62.64 \mathrm{kNm} \rightarrow$ Ast $=425.4 \mathrm{~mm}^{2}$
Using 16mm φ bar, Spacing $=1000$ ast $/$ Ast $=110.02 \mathrm{~mm} \rightarrow$ Provide 16mm @ 110mm c/c
At midspan, spacing $=156.72 \mathrm{~mm} \rightarrow$ Provide $16 \mathrm{~mm} @ 150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Transverse reinforcement $=0.12 \%$ of $c / s=0.12 / 100 \times 1000 \times 500=600 \mathrm{~mm}^{2}$
For 8 mm bar, Spacing $=83.775 \mathrm{~mm} \rightarrow$ Provide $8 \mathrm{~mm} @ 80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.
Check for shear:
Maximum shear $=w(1 / 2-d)=107(2.5 / 2-0.415)=89.345 \mathrm{kN}$
Factored shear force $=134.0175 \mathrm{kN}$
$\zeta \mathrm{v}=0.33 \mathrm{~N} / \mathrm{mm}^{2}, \zeta \mathrm{c}=0.29 \mathrm{~N} / \mathrm{mm}^{2}, \zeta \mathrm{cmax}=3.1 \mathrm{~N} / \mathrm{mm}^{2}$

Depth has to be increased.

Design of stem:

The stem is also designed as one way continuous slab with support moment $\mathrm{wl}^{2} / 12$ and midspan moment $\mathrm{wl}^{2} / 16$. For the negative moment at the support, reinforcement is provided at the rear side and for positive moment at midspan, reinforcement is provided at front face of the stem.

The maximum moment varies from a base intensity of $\mathrm{K}_{\mathrm{a}} \cdot \mathrm{Y}_{\mathrm{e}} \cdot \mathrm{h}=1 / 3 \times 16 \times(9-0.5)=45.33 \mathrm{kN} / \mathrm{m}$ $\mathrm{M}_{\text {sup }}=\mathrm{wl}^{2} / 12=1.5 \times 45.33 \times 3.54^{2} / 12=71 \mathrm{kNm}$
$\mathrm{M}_{\text {mid }}=\mathrm{wl}^{2} / 16=1.5 \times 45.33 \times 3.54^{2} / 16=53.26 \mathrm{kNm}$
Effective depth $=500-(50+20 / 2)=440 \mathrm{~mm}$
$A_{\text {st }}$ at support $=1058 \mathrm{~mm}^{2}$, For $16 \mathrm{~mm} \varphi$, Spacing $=190 \mathrm{~mm}$. Provide $16 \mathrm{~mm} @ 190 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ $A_{\text {st }}$ at midspan $=718 \mathrm{~mm}^{2}$, For $16 \mathrm{~mm} \varphi$, Spacing $=280 \mathrm{~mm}$. Provide $16 \mathrm{~mm} @ 280 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ Max. SF $=\mathrm{w}(\mathrm{l} / 2-\mathrm{d})=60.29 \mathrm{kN}$, Factored $\mathrm{SF}=90.44 \mathrm{kN}$

Transverse reinforcement $=0.12 \%$ of $\mathrm{c} / \mathrm{s} \rightarrow 8 \mathrm{~mm} @ 80 \mathrm{mmc} / \mathrm{c}$
$\zeta_{\mathrm{v}}=0.188 \mathrm{~N} / \mathrm{mm}^{2}, \zeta_{\mathrm{c}}=0.65 \mathrm{~N} / \mathrm{mm}^{2}, \zeta_{\mathrm{cmax}}=3.1 \mathrm{~N} / \mathrm{mm}^{2}$ Safe in Shear.

Design of Counterfort:

The counterfort is designed as a cantilever beam whose depth is equal to the length of the heel slab at the base and reduces to the thickness of the stem at the top. Maximum moment at the base of counterfort, $\mathrm{M}_{\max }=\mathrm{K}_{\mathrm{a}} \cdot \mathrm{Y}_{\mathrm{e}} \cdot \mathrm{h}^{3} / 6 \times \mathrm{L}_{\mathrm{e}}$

Where, $L_{e} \rightarrow c / c$ distance from counterfort
$\mathrm{M}_{\text {max }}=1932.5 \mathrm{kNm}$, Factored $\mathrm{Mmax}=2898.75 \mathrm{kNm}$
$A_{\text {st }}=2755.5 \mathrm{~mm}^{2}$, Assume $25 \mathrm{~mm} \varphi$ bar, No. of bars required $=2755.5 / 491.5=5.61 \sim 6$
The main reinforcement is provided along the slanting face of the counterfort.
Curtailment of reinforcement:
Not all the 6 bars need to be taken to the free end. Three bars are taken straight to the entire span of the beam. One bar is cut at a distance of,
$\frac{n-1}{n}=\frac{h 1^{2}}{8.5^{2}}$, where n is the total number of bars and h 1 is the distance from top.
When $\mathrm{n}=6$, $\mathrm{h} 1=7.75 \mathrm{~m}$ [from bottom]
The second part is cut at a distance of,
$\frac{n-2}{n}=\frac{h 2^{2}}{8.5^{2}}, \mathrm{~h} 2=6.94 \mathrm{~m}$ [from bottom]
The third part is cut at a distance of,
$\frac{n-3}{n}=\frac{h 3^{2}}{8.5^{2}}, \mathrm{~h} 3=6.01 \mathrm{~m}$ [from bottom]
Vertical ties and horizontal ties are provided to connect the counterfort with the vertical stem and the heel slab.

Design of horizontal ties:

Closed stirrups are provided to the vertical stem and the counterfort. Considering 1 m strip, the tension resisted by reinforcement is given by lateral pressure on the wall multiplied by contributing area.
$\mathrm{T}=\mathrm{C}_{\mathrm{a}} \cdot \mathrm{Ye}_{\mathrm{e}} . \mathrm{h} \times \mathrm{h}$, where, $\mathrm{A}_{\mathrm{st}}=\frac{T}{0.87 f y}$
$\mathrm{T}=1 / 3 \times 16 \times(9-0.5) \times 3.54=160.48 \mathrm{kN}$
Factored force, $\mathrm{T}=1.5 \times 160.48 \mathrm{kN}$
$A_{s t}=666.72 \mathrm{~mm}^{2}$. For $10 \mathrm{~mm} \varphi$, Spacing $=110 \mathrm{~mm}$.
Provide 10mm@110mm c/c closed stirrups as horizontal ties.

Design of vertical ties:

The vertical stirrup connects the counterfort and the heel slab. Considering 1 m strip, the tensile force is the product of the average downward pressure and the spacing between the counterforts. $\quad \mathrm{T}=\operatorname{Avg}(43.56 \& 107) \times \mathrm{Le}=266.49 \mathrm{kN}$

Factored $\mathrm{T}=399.74 \mathrm{kN}$
Ast $=1107.15 \mathrm{~mm}^{2}$. For $10 \mathrm{~mm} \varphi$, Spacing $=70.93 \mathrm{~mm}$.
Provide 10mm @ 70mm c/c.

Reinforcement details of stem, toe slab and heel slab

Reinforcement details of stem and counterfort

Section through counterfort showing counterfort reinforcement

Further, water tanks are classified based on their positions as,

1. Resting on ground
a. Flexible or free base
b. Hinged
c. Fixed
2. Elevated or overhead
3. Underground

Components of water tank:

1. Side Walls [Rectangular or cylindrical]
2. Base slab
3. Cover slab or dome
4. Staging [Overhead] \rightarrow Columns, Beams, Bracings

Types of Joints:
i) Flexible base
ii) Hinged base
iii) Fixed base

(c) Fixed Base

Water pressure distribution:

1. On side walls, it acts linearly varying from 0 at top to 'wh' at bottiom.
2. On base slab, uniform pressure acts with intensity 'wh'

Permissible stresses:

The method of design adopted for design of water tank is working stress method.
The permissible stress values in concrete and steel are given in Tables 21 and 22 of IS4562000, as follows:

For M20 $\rightarrow \sigma_{c b c}=7 \mathrm{~N} / \mathrm{mm}^{2}, \sigma_{\mathrm{t}}=5 \mathrm{~N} / \mathrm{mm}^{2}$
For Fe250 steel, σ st $=130-140 \mathrm{~N} / \mathrm{mm}^{2}$
For Fe415 steel, σ st $=230-240 \mathrm{~N} / \mathrm{mm}^{2}$

Permissible Concrete Stresses in calculations relating to Resistance to Cracking in Water retaining Structures (IS: 3370-Part-II-1965)

	Grade of Concrete					
Stress $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\mathrm{M}-15$	$\mathrm{M}-20$	$\mathrm{M}-25$	$\mathrm{M}-30$	$\mathrm{M}-35$	$\mathrm{M}-40$
Direct Tension	1.1	1.2	1.3	1.5	1.6	1.7
Bending Tension	1.5	1.7	1.8	2.0	2.2	2.4

Permissible Stresses in Steel reinforcement for Strength Calculations in Water retaining Structures (IS: 3370-Part-II-1965)

For liquid retaining structures, the stress values are further reduced and given in IS3370 Part II [Reinforced concrete structures].

Concrete Grade	Direct Tension	Bending Tension
M15	1.1	1.5
M20	1.2	1.7
M25	1.3	1.8
M30	1.5	2.0
M35	1.6	2.2
M40	1.7	2.4

As per clause $B-2.1 .1$, the tensile stress is given by,
$\sigma=\frac{F t}{A_{c}+m A_{s t}} \quad$ where, $\mathrm{m} \rightarrow$ modular ratio $=280 / 3 \sigma_{\mathrm{cbc}}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}}$
$\sigma c b c$ is the permissible compressive stress.
Permissible stress in steel is given in IS3370 Part II as,
Tensile stress: Fe250 $\rightarrow 115 \mathrm{~N} / \mathrm{mm}^{2}$, Fe415 $\rightarrow 150 \mathrm{~N} / \mathrm{mm}^{2}$
Bending stress:

	$<225 \mathrm{~mm}$		$>225 \mathrm{~mm}$	
	On Face	On face away	On Face	On face away
Fe250	115	115	115	125
Fe415	150	150	190	175

Reinforcement requirements: [As per IS3370]

1. Minimum $A_{\text {st }}$ is 0.3% for 100 mm section and 0.2% for 450 mm section.
2. If thickness exceeds 200 mm , the reinforcement is provided in double layers. A minimum cover of 25 mm is provided along the liquid retained face and the cover is increased by $12 \mathrm{~mm}(37 \mathrm{~mm})$ if the wall is subjected to aggressive soil or liquid.

HOOP TENSION AND BENDING MOMENTS IN CYLINDRICAL TANK WALLS

Hoop Tension and Bending Moments in Cylindrical Tank Walls

CYLINDRICAL TANK WITH FLEXIBLE BASE:

The wall is designed for hoop stress, for which circumferential horizontal steel is provided.
Minimum reinforcement is provided along the vertical direction

1) Design a circular water tank with flexible base for a capacity of 4 lakh litres with the tank having a depth of 4 m , including a free base of 200mm. Use M20 concrete and Fe415 steel.

Area of water tank $=$ Volume $/$ Height

$$
=400 / 4=100 \mathrm{~m}^{2} \quad\left[\text { As Vol. }=4 \text { Lakh Litres }=400 \mathrm{~m}^{3}\right]
$$

П. $\mathrm{d}^{2} / 4=100 \mathrm{~m}^{2} \rightarrow \mathrm{~d}=11.28 \mathrm{~m}$

Provide a diameter of 11.5 m
The height of water to be retained $=3.8 \mathrm{~m}$
The wall is subjected to hoop tension acting along the circumferential direction. The hoop tension per metre height is given by,

$$
\text { Hoop tension }=\frac{\gamma . h . D}{2}=(9.81 \times 3.8 \times 11.5) / 2=214.34 \mathrm{kN}
$$

Permissible stress in tension as per IS3370 for Fe415 steel is $150 \mathrm{~N} / \mathrm{mm}^{2}$.
$A_{\text {st }}$ required $=214.34 \times 10^{3} / 150=1428.9 \mathrm{~mm}^{2}$
Spacing $=1000$. ast $/$ Ast, $\rightarrow 16 \mathrm{~mm} @ 140 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Thickness of tank is adopted based on the tensile stress concrete can take.

$$
\begin{aligned}
& \sigma_{\mathrm{ct}}=\frac{F t}{A_{c}+m A_{s t}} \\
& \mathrm{Ac}=1000 \mathrm{t}, \mathrm{~F}=214.34 \mathrm{kN}, \mathrm{~m}=280 / 3 \sigma_{\mathrm{cbc}}=280 /(3 \times 7)=13.33 \approx 13 \\
& \sigma_{\mathrm{ct}}=1.2=\frac{214.34}{1000 t+(13.33 \times 1428.9)} \\
& \rightarrow \mathrm{t}=160 \mathrm{~mm}
\end{aligned}
$$

Minimum thickness as per empirical formula is,

$$
\begin{aligned}
\mathrm{t}_{\min }= & (30 \mathrm{~h}+50) \mathrm{mm} \quad \text { where } \mathrm{h} \rightarrow \mathrm{~m} \\
& =30 \times 3.8+50=164 \mathrm{~mm}
\end{aligned}
$$

Provide a thickness of 170 mm .
Minimum reinforcement is provided as vertical steel.
Minimum Ast is 0.3% for 100 mm section and 0.2% for 450 mm section.
Therefore, for 170 mm thickness, Ast required is 0.28% of c / s
$A_{\text {st }}=(0.28 / 100) \times 1000 \times 170=476 \mathrm{~mm}^{2}$
Provide 8mm @ 100mm c/c

Curtailment of reinforcement:

At $2 m$ height,
Hoop tension $=\frac{\gamma . h . D}{2}=(9.81 \times 1.8 \times 11.5) / 2=101.5335 \mathrm{kN}$
Ast $=101.535 \times 103 / 150=676.89 \mathrm{~mm}^{2}$
Provide $10 \mathrm{~mm} @ 110 \mathrm{~mm}$ c/c (or) 16 mm @ $290 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Design of base slab:

Since the base slab rests directly on the ground, a nominal thickness of 150 mm is provided and a minimum reinforcement of 0.3% of c / s is provided along both ways and along both the faces.
0.3% of $\mathrm{c} / \mathrm{s} \rightarrow 0.3 / 100 \times 150 \times 1000=450 \mathrm{~mm}^{2}$, Required $8 \mathrm{~mm} @ 110 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Provide 8mm @220 mm c/c on both faces.
Below the base slab, a layer of lean concrete mix M20 is provided for 75 mm thickness with a layer of tar felt.

Design of dome: - Roof covering for cylindrical water tanks
[A dome acts as a roof covering for cylindrical water tanks. The dome slab is cast between the ring beams provided at the top edge of the side walls of the water tank. The dome is designed for meridonial thrust and hoop force].
2) In the above problem, design a spherical dome having a central rise of one fifth the diameter.

Height $=1 / 5 \times 11.5=2.3 \mathrm{~m}$

Details of Dome of Circular Water Tank
Radius of curvature of the dome $[\mathrm{R}]$
$R^{2}=(R-2.3)^{2}+5.75^{2}$
$\rightarrow \mathrm{R}=8.33 \mathrm{~m}$
$\operatorname{Cos} \theta=6.04 / 8.33=0.724$
The dome is subjected to meridonial thrust and hoop force, for which the permissible stress should be within permissible compressive strength of concrete.
$\sigma_{\mathrm{c}}=5 \mathrm{~N} / \mathrm{mm}^{2}$
Assume thickness of dome as 100 mm
Meridonial thrust, $\mathrm{T}=\frac{W R}{1+\operatorname{Cos} \theta}$, where ' w ' is the loading of dome slab, self weight of slab and any live load acting on it.
Self weight of slab $=0.1 \times 25=2.5 \mathrm{kN} / \mathrm{m}^{2}$
Live load $\quad=2 \mathrm{kN} / \mathrm{m}^{2}$

$$
\mathrm{W}=4.5 \mathrm{kN} / \mathrm{m}^{2}
$$

$\mathrm{T}=\frac{4.5 \times 8.3}{1+0.74}=21.46 \mathrm{kN}$
Meridonial thrust $=\mathrm{T} /(\mathrm{c} / \mathrm{s}$ area $)=21.46 \times 10^{3} /(100 \times 1000)=0.21 \mathrm{~N} / \mathrm{mm}^{2}<5 \mathrm{~N} / \mathrm{mm}^{2}$
The hoop stress developed in dome slab is given by,
Hoop stress $=\frac{W R}{t}\left(\operatorname{Cos} \theta-\frac{1}{1+\operatorname{Cos} \theta}\right)=\frac{4.5 \times 8.3}{100}\left(0.74-\frac{1}{1+0.74}\right)=0.06 \mathrm{~N} / \mathrm{mm}^{2}<5 \mathrm{~N} / \mathrm{mm}^{2}$
The provided 100 mm section is sufficient. Minimum reinforcement of 0.3% of c / s is provided both ways.
0.3% of $\mathrm{c} / \mathrm{s}=0.3 / 100 \times 1000 \times 100=300 \mathrm{~mm}^{2} \quad \rightarrow 8 \mathrm{~mm} @ 160 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Design of ring beam:
The horizontal component of meridonial thrust acts on the ring beam. The horizontal thrust, $A_{s t}=H_{L \text { comp }} / \sigma_{s} \quad$ where, $H_{L \text { Comp }}=T . \operatorname{Cos} \theta \times D / 2=21.46 \times 10^{3} \times 0.74 \times 5.75=91.3 \mathrm{kN}$ $A_{\text {st }}=91.3 \times 103 / 150=608 \mathrm{~mm}^{2}$
Provide $(2 \# 16 \mathrm{~mm} \varphi+2 \# 12 \mathrm{~mm} \varphi) \rightarrow\left(626 \mathrm{~mm}^{2}\right)$
Size of ring beam is obtained based on tensile stress relation,
$\sigma_{\mathrm{ct}}=\frac{F_{t}}{A_{c}+(m-1) A_{s t}}$
Here ring beam is not subjected to water load. So, permissible tensile stress for M20 concrete is $2.8 \mathrm{~N} / \mathrm{mm}^{2}$ (Annex B-3.11) of IS456-2000.
$\sigma_{\mathrm{ct}}=2.8 \mathrm{~N} / \mathrm{mm}^{2}$
$\rightarrow 2.8=\frac{F_{t}}{A_{c}+13.3 \times 608} \rightarrow \mathrm{~A}_{\mathrm{st}}=608 \mathrm{~mm}^{2}$
$\mathrm{F}=\mathrm{T} \operatorname{Cos} \theta \times \mathrm{D} / 2=21.46 \times 0.74 \times 5.75=91.31 \times 10^{3} \mathrm{~N}$
$\rightarrow A_{c}=25314 \mathrm{~mm}^{2}$.
Provide $150 \times 150 \mathrm{~mm}$ size of ring beam with (2\# 16mm $\varphi+2 \# 12 \mathrm{~mm} \varphi$) bars. If any tensile stress is developed, the steel will take the tensile stress.

Sectional elevation

DESIGN OF CYLINDRICAL WATER TANK: [With fixed base]
For cylindrical tanks fixed at the base, bending moment and hoop tension are developed, whose values are based on non-dimensional parameter, $\frac{H^{2}}{D t}$. The vertical reinforcement is provided for the bending moment developed and the transverse reinforcement is provided for hoop tension developed.

The coefficients of the non-dimensional parameter $\frac{H^{2}}{D t}$ are given in Tables 9 (HT) and 10 (BM).
Maximum hoop tension $=$ Coefficient \times W.H.D/2
Bending moment $=$ Coefficient $\times \mathrm{w} . \mathrm{H}^{3}$
Where, $\mathrm{R} \rightarrow$ Radius of tank, $\mathrm{D} \rightarrow$ Diameter of tank
3) In the above problem, design a water tank for fixed base condition. Permissible stresses are, for Fe415, $\sigma_{\mathrm{st}}=150 \mathrm{~N} / \mathrm{mm}^{2}$, as per IS3370 - Part II and for M20, $\sigma_{\mathrm{ct}}=1.2 \mathrm{~N} / \mathrm{mm}^{2}$.
$H=4 m, D=11.5 \mathrm{~m}$
$\mathrm{t}=30 \mathrm{~h}+50=170 \mathrm{~mm}$
$\frac{H^{2}}{D t}=\frac{4^{2}}{11.5 x 0.17}=8.184$
From Table 9 of IS3370 - Part IV, the coefficient for maximum hoop tension is taken and from Table 10 of IS3370 - Part IV, the coefficient of bending moment is taken.
$\frac{H^{2}}{D t} \rightarrow 8$, Hoop Tension Coeff. $\rightarrow 0.575 @ 0.6 \mathrm{H}$
$\frac{H^{2}}{D t} \rightarrow 10$, Hoop Tension Coeff. $\rightarrow 0.608$ @ 0.6H
$\rightarrow \frac{H^{2}}{D t} \rightarrow 8.18$, Hoop Tension Coeff. $\rightarrow 0.578 @ 0.6 \mathrm{H}$
Therefore, $\mathrm{T}=$ Coeff. $\mathrm{X} w H R=0.578 \times 9.81 \times 4 \times 11.5 / 2=130.41 \mathrm{kN}$
$\frac{H^{2}}{D t} \rightarrow 8$, BM Coeff. $\rightarrow-0.0146$
$\frac{H^{2}}{D t} \rightarrow 10, \mathrm{BM}$ Coeff. $\rightarrow-0.0122$
$\rightarrow \frac{H^{2}}{D t} \rightarrow 8.18$, BM Coeff. $\rightarrow 0.01438$
Max. BM $=-0.01438 \times 9.81 \times 4^{3}=-9.031 \mathrm{kNm}$
The vertical reinforcement is provided for the above moment and transverse steel is provided for hoop tension.

For hoop tension as,
$A_{\text {st }}=H T / 150=130.41 \times 10^{3} / 150=869.33 \mathrm{~mm}^{3}$.
Provide 12 mm @ 130mm c/c along the transverse direction.
For bending moment,
$\mathrm{A}_{\mathrm{st}}=\frac{M}{\sigma_{s t} \cdot j \cdot d}$
Where, for M20, $\mathrm{j}=0.84, \mathrm{R}=1.16, \sigma_{\mathrm{cbc}}=7 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{A}_{\text {st }}=\frac{9.03}{150 \times 0.84 \times 129}=555 \mathrm{~mm}^{2}$
d $=\mathrm{D}-\varphi_{\mathrm{HT}}-\varphi_{\mathrm{BM}} / 2-\mathrm{C}_{\mathrm{C}}$

$$
=170-12-8 / 2-25=129 \mathrm{~mm}
$$

$\mathrm{d}=\sqrt{\frac{M}{R . b}}=\sqrt{\frac{9.2 \times 10^{6}}{1.16 \times 1000}}=88.23 \mathrm{~mm}<\mathrm{d}[129 \mathrm{~mm}]$
Min. depth required $=88.23 \mathrm{~mm}$
0.3% of c / s (vertical steel) $=0.28 / 100 \times 1000 \times 170=476 \mathrm{~mm}^{2}$
Provide 8mm @ 100mm c/c
The maximum of Ast for $B M$ at $A_{s t}\left\{\right.$ maximum is provided as vertical reinforcement [$555 \mathrm{~mm}^{2}$].
Provide 8mm @ 90mm c/c
Provide $10 \mathrm{~mm} @ 130 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ as vertical reinforcement. If the reinforcement is provided as double layers on both the faces, the spacing is doubled.
Provide 10 mm @ $260 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ as vertical reinforcement along the two faces with transverse hook reinforcement at 12 mm @ 260 mm c/c along both the faces.

Design of base slab:

Provide a nominal thickness of 150 mm for base slab with 0.3% distribution steel [8mm @ 200 mm c/c, along both faces, both ways].
Also provide a haunch of size 160 mm at the junction of the wall and the base slab.

DESIGN OF RECTANGULAR WATER TANK

When L/B < 2, cantilever moment generates at the base and maximum bending action takes place along the continuous edges of the side walls in both short and long direction.

When L/B > 2, only cantilever action takes place in long wall. Whereas, a short wall is designed for horizontal bending and cantilever action.
[Cylindrical \rightarrow Hoop Tension \rightarrow Transverse reinforcement]

When L/B < 2,

i) Cantilever moment at base $=$ w.H.h ${ }^{2} / 6$
where, $\mathrm{h}=1 \mathrm{~m}$ or $\mathrm{H} / 4$, whichever greater

ii) For horizontal bending of the walls, the maximum moment is found from,
a) Fixed end moments,

$$
\mathrm{PL}^{2} / 12 \quad \& \quad \mathrm{~PB}^{2} / 12
$$

b) Positive moment at midspan,

$$
\mathrm{M}_{\mathrm{f}}=\mathrm{PL}^{2} / 8 \quad \& \quad \mathrm{M}_{\mathrm{f}}=\mathrm{PB}^{2} / 8
$$

Where, M_{f} is the final moment at the supports (junction between long wall and short wall). The maximum value is taken for design. Here,

$$
P \rightarrow \text { water pressure given as } p=w(H-h)
$$

For the maximum moment, the area of steel along the longer direction and shorter direction are found from the relation,

$$
\mathrm{A}_{\mathrm{stL}}=\frac{M-P_{L} x}{\sigma_{s t} \cdot j \cdot d}+\frac{P_{L}}{\sigma_{s t}} ; \quad \mathrm{A}_{\mathrm{stB}}=\frac{M-P_{B} x}{\sigma_{s t} \cdot j \cdot d}+\frac{P_{B}}{\sigma_{s t}}
$$

Where, $P_{L} \& P_{B}$ are tension in long and short walls
p - Pressure exerted by water
Tension in the walls is given by, $P_{L}=p \times B / 2 \& P_{B}=p$

1. Design a rectangular tank of size $4 \mathrm{~m} \times 6 \mathrm{~m}$ with height 3 m . The tank rests on firm ground. Use M20 concrete and Fe415 steel. Take design constants $j=0.853 \& R=1.32$.

Pressure exerted by water, $\mathrm{p}=\mathrm{w}(\mathrm{H}-\mathrm{h})$
Where, $\mathrm{h}=1 \mathrm{~m}$ or $\mathrm{H} / 4 \rightarrow 1 \mathrm{~m}$ or $0.75 \mathrm{~m}=1 \mathrm{~m}$ [greater]
$P=9.81(3-1)=19.62 \mathrm{kN} / \mathrm{m} 2$
To find the final moment at the junction of long wall and short wall based on the fixed end moment and distribution factor, the moment distribution is done.

Joint A:
D.F. $=\frac{I_{1} / L_{1}}{I_{1} / L_{1}+I_{2} / L_{2}}$.

The stiffness along the long wall and short wall are the same ($I_{1}=I_{2}$), since uniform thickness of wall is adopted along long wall and short wall.
AB
AD
D.F. $\frac{I_{1} / L_{1}}{I_{1} / L_{1}+I_{2} / L_{2}}$.
$\frac{I_{2} / L_{2}}{I_{1} / L_{1}+I_{2} / L_{2}}$. $\frac{1 / 6}{1 / 6+1 / 4}$. $\frac{1 / 4}{1 / 6+1 / 4}$.

Short wall is stiffer than the long wall.
$M_{F A B}=\mathrm{pL}^{2} / 12=19.62 \times 6^{2} / 12=58.86 \mathrm{kNm}$ (3p)
$M_{\text {FAD }}=p B^{2} / 12=19.62 \times 4^{2} / 12=26.16 \mathrm{kNm}(1.33 \mathrm{p})$
Joint A,

	AB	AD
FEM	$3 p$	$-1.33 p$
DF	0.4	0.6
BM	(-1.67×0.4)	(-1.67×0.6)
	$=-0.67 p$	$=-1.002 p$
CO	-	-
M_{f}	$+2.33 p$	$-2.33 p$

$\mathrm{Mf}=2.33 \mathrm{p}=2.33 \times 19.62=45.72 \mathrm{kNm}$
Moment at midspan,

Long wall:
$\frac{p L^{2}}{8}-M_{f}=42.57 \mathrm{kNm}$,
Short wall:
$\frac{p B^{2}}{8}-M_{f}=-6.48 \mathrm{kNm}$,
The reinforcement is provided for maximum moment generated.
Therefore, maximum moment generated in the water tank is
45.72 kNm .
$\mathrm{A}_{\mathrm{stL}}=\frac{M-P_{L} x}{\sigma_{s t} \cdot j \cdot d}+\frac{P_{L}}{\sigma_{s t}} ; \quad \mathrm{A}_{\mathrm{stB}}=\frac{M-P_{B} x}{\sigma_{s t} \cdot j \cdot d}+\frac{P_{B}}{\sigma_{s t}}$
$\mathrm{P}_{\mathrm{L}}=\mathrm{p} \times \mathrm{B} / 2=19.62 \times 4 / 2=39.24 \mathrm{kN}$
$P_{B}=p \times L / 2=19.62 \times 6 / 2=58.86 \mathrm{kN}$
$\mathrm{d}_{\mathrm{req}}=\sqrt{\frac{M}{R . b}}=\sqrt{\frac{45.72 \times 10^{6}}{1.32 \times 1000}}=186 \mathrm{~mm}$
Provide $\mathrm{d}=190 \mathrm{~mm}, \mathrm{D}=220 \mathrm{~mm}$
Provide effective depth of 190 mm and effective cover of 30 mm

$$
\begin{aligned}
x \quad & =\mathrm{D} / 2-\text { Eff. Cover } \\
& =220 / 2-30 \\
& =80 \mathrm{~mm}
\end{aligned}
$$

Area of steel required for Tension in the wall along the longer side and shorter side,
$A_{\text {stL }}=\frac{45.72 \times 10^{6}-\left(39.24 \times 80 \times 10^{3}\right)}{150 \times 0.853 \times 190}+\frac{39.24 \times 10^{3}}{150}=$ $2013 \mathrm{~mm}^{2}$
$A_{\text {stB }}=\frac{45.72 \times 10^{6}-\left(58.86 \times 80 \times 10^{3}\right)}{150 \times 0.853 \times 180}+\frac{58.86 \times 10^{3}}{150}=$ $2079 \mathrm{~mm}^{2}$
Provide $20 \mathrm{~mm} \varphi$ bar, spacing required along horizontal direction is 150 mm
Provide 20 mm @ $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ along both faces in the horizontal direction, along short wall and long wall.

The vertical cantilever moment for a height of ' h ' is $\quad=w . H . h^{2} / 6 \quad[L / B<2]$

$$
=9.81 \times 3 \times 1^{2} / 6=4.905 \mathrm{kNm}
$$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{A}_{\mathrm{st}}=\frac{M}{\sigma_{s t} \cdot j \cdot d}=201.76 \mathrm{~mm}^{2} \\
\text { Min. Ast }
\end{array}=0.3 \% \text { of } \mathrm{c} / \mathrm{s} \\
& \\
& \quad=0.3 / 100 \times 1000 \times 220 \\
& \\
& =660 \mathrm{~mm}^{2}
\end{aligned}
$$

Spacing is provided for the maximum of the above two [66mm ${ }^{2}$]
Required, 10mm @ 110mm c/c
Provide, $10 \mathrm{~mm} @ 220 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ as vertical reinforcement along both the faces. For the base slab, provide a nominal thickness of 150 mm and minimum $A_{s t}$ of 0.3% of c / s.
$A_{\text {st }}=0.3 / 100 \times 1000 \times 150=450 \mathrm{~mm}^{2}$
Spacing of 10 mm bars required $=170 \mathrm{~mm}$
Provide $10 \mathrm{~mm} @ 300 \mathrm{~mm}$ c/c along both faces, both ways.
Provide 75 mm lean mix with a layer of tar felt which acts as a water bar, provided between the tank and lean mix concrete.
2) Design a water tank of size $4 \mathrm{~m} \times 9 \mathrm{~m}$ with height 3 m . Use M20 concrete and Fe415 steel. The design constants are $\mathrm{j}=0.853$ and $\mathrm{R}=1.32$.

Since $L / B>2$, the tank behaves such that the long wall acts as a cantilever member with moment $\mathrm{w} \cdot \mathrm{H}^{3} / 6$ and short wall is subjected to both cantilever moment and horizontal bending moment.

Long wall:
Cantilever moment at base $=\mathrm{w} \cdot \mathrm{H}^{3} / 6$
Where, $\mathrm{h}=1 \mathrm{~m}$ or $3 / 4 \mathrm{~m}=1 \mathrm{~m}=9.81 \times 3^{3} / 6=44.145 \mathrm{kNm}$
Short wall:
Cantilever moment $=$ w.H.h ${ }^{2} / 12=9.81 \times 3 \times 1^{2} / 2=14.715 \mathrm{kNm}$
Horizontal bending moment $=\mathrm{pB}^{2} / 16=19.62 \times 4^{2} / 16=19.62 \mathrm{kNm}$
(Where, $\mathrm{p}=\mathrm{w}(\mathrm{H}-\mathrm{h})=9.81(3-1)=19.62 \mathrm{kN} / \mathrm{m})$

Maximum of the three moments $=44.145 \mathrm{kNm}$
$\mathrm{A}_{\text {stL }}=\frac{M-P_{L} x}{\sigma_{s t} \cdot j \cdot d}+\frac{P_{L}}{\sigma_{s t}}$, where, $\mathrm{P}_{\mathrm{L}}=\mathrm{p} \mathrm{x} \mathrm{B} / 2=19.62 \times 4 / 2=39.24 \mathrm{kN}$ and $\mathrm{P}_{\mathrm{B}}=\mathrm{p}=19.62 \mathrm{kN}$
$\mathrm{d}_{\text {req }}=\sqrt{\frac{M}{R . b}}=\sqrt{\frac{44.145 \times 10^{6}}{1.32 \times 1000}}=182.87 \mathrm{~mm}$
Provide d=190mm, D = 220mm
Provide effective depth of 190 mm and effective cover of 30 mm .

$$
\begin{aligned}
x & =D / 2-\text { Eff. Cover } \\
& =220 / 2-30=80 \mathrm{~mm}
\end{aligned}
$$

Area of steel required for Tension in the wall along the longer side,

$$
A_{\text {stL }}=\frac{44.145 \times 10^{6}-\left(39.24 \times 80 \times 10^{3}\right)}{150 \times 0.853 \times 190}+\frac{39.24 \times 10^{3}}{150}=1948.35 \mathrm{~mm}^{2}
$$

Provide $20 \mathrm{~mm} \varphi$ bar, spacing required along horizontal
 direction is 160 mm . Provide $20 \mathrm{~mm} @ 300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ along both faces in the horizontal direction, along short wall and long wall.

Along the shorter side,
Along vertical direction,
$A_{\text {stB }}=\frac{14.72 \times 10^{6}-\left(19.62 \times 80 \times 10^{3}\right)}{150 \times 0.853 \times 180}+\frac{19.62 \times 10^{3}}{150}=690.45 \mathrm{~mm}^{2}$
Required -10 mm @ $220 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ on both faces.

Along horizontal direction,
$A_{\text {stB }}=\frac{19.62 \times 10^{6}-\left(19.62 \times 80 \times 10^{3}\right)}{150 \times 0.853 \times 180}+\frac{19.62 \times 10^{3}}{150}=897.5 \mathrm{~mm}^{2}$
Required - 10mm @160mm c/c on both faces.

Distribution steel:

$$
\begin{aligned}
& 100 \mathrm{~mm} \rightarrow 0.3 \% \\
& 450 \mathrm{~mm} \rightarrow 0.2 \% \\
& 220 \mathrm{~mm} \rightarrow 0.26 \%
\end{aligned}
$$

Min $A_{s t}=0.26 \%$ of $c / s=0.26 / 100 \times 1000 \times 220=572 \mathrm{~mm}^{2}$
Min. Required - $10 \mathrm{~mm} @ 260 \mathrm{~mm} \mathrm{c} / \mathrm{c}$, which is less than the above two values.

Base slab:

Since base slab is resting directly on the ground, nominal thickness of 150 mm is provided and minimum reinforcement of 0.3% of cross-section is provided both ways along both faces.

$$
A_{s t} \text { required }=0.3 \% \text { of } c / s=465 \mathrm{~mm}^{2} .
$$

Provide 8mm @ 200mm c/c.
Below the base slab, a layer of lean concrete mix is provided with 75 mm thick tar felt layer between them.

DESIGN OF UNDERGROUND WATER TANK

Design of underground water tank is similar to that of tanks resting on grounds (for rectangular water tanks based on L/B ratio), where additional moment if any due to the earth pressure on the side walls need to be considered. If the soil is submerged, pressure exerted by water is also considered. Thus the side walls are checked for the two critical conditions,
i) No earth pressure with pressure from water inside, $p=\gamma_{w}(H-h)$
ii) Earth pressure exerted on wall under tank empty condition, $\mathrm{p}=\mathrm{H} / 3 .\left(\gamma-\gamma_{w}\right)+\gamma_{w} H$

The tank has to be checked for uplift water pressure for which frictional resistance should be sufficient.

Design an underground water tank of size $12 \mathrm{~m} \times 5 \mathrm{~m}$ with height 4 m . The density of soil is $16 \mathrm{kN} / \mathrm{m}^{3}$ and coefficient of friction between soil and concrete is 0.15 . The soil is saturated. Here, L/B=12 / 5 = $2.4>2$

The tank walls are checked for two critical conditions,
i) No earth pressure with pressure from water inside, $p=\gamma_{w}(H-h)$

$$
=10(4-1)=30 \mathrm{kN} / \mathrm{m}^{2}
$$

ii) Earth pressure exerted on wall under tank empty condition, $p=H / 3 .\left(\gamma-\gamma_{w}\right)+\gamma_{w} H$

$$
=48 \mathrm{kN} / \mathrm{m}^{2}
$$

Where, $\mathrm{h}=1 \mathrm{~m}$ or $(\mathrm{H} / 4=1 \mathrm{~m})$
Therefore, the maximum pressure is used in finding out bending moment on the wall.
Long wall,
Cantilever moment $=\frac{\gamma_{w} H^{3}}{6}=10 \times 4^{3} / 6=106.67 \mathrm{kNm}$
Short wall,
Cantilever moment $=\frac{\gamma_{w} H h^{2}}{2}=20 \mathrm{kNm}$
Horizontal bending moment $=\frac{p B^{2}}{16} \quad=\frac{30 x 5^{2}}{16}=46.875 \mathrm{kNm} \&$

$$
=\frac{48 x 5^{2}}{16}=75 \mathrm{kNm}
$$

Long wall:

$\mathrm{A}_{\mathrm{stL}}=\frac{M-P_{L} x}{\sigma_{s t} \cdot j \cdot d}+\frac{P_{L}}{\sigma_{s t}}$, where, $\quad \mathrm{P}_{\mathrm{L}}=\mathrm{p} \times \mathrm{B} / 2=48 \times 2.5=120 \mathrm{kN}$ $P_{B}=p=48 \mathrm{kN}$
$\mathrm{d}_{\text {req }}=\sqrt{\frac{M}{R . b}}=\sqrt{\frac{106.67 \times 10^{6}}{1.32 \times 1000}}=284.27 \mathrm{~mm}$
Provide d $=290 \mathrm{~mm}$
Provide, $D=290+30=320 \mathrm{~mm}$
$x=320 / 2-30=130 \mathrm{~mm}$
$\mathrm{A}_{\mathrm{st}(\mathrm{VL})}=2454.35+800=3254.35 \mathrm{~mm}^{2}$
$A_{\text {st(HL) }}=0.237 \%$ of c / s
(For $100 \mathrm{~mm} \quad 0.3 \%$
For $450 \mathrm{~mm} \quad 0.2 \%$
For $320 \mathrm{~mm} \quad 0.237 \%$)
$\mathrm{A}_{\mathrm{st}(\mathrm{HL})}=0.237 \times 1000 \times 320=758.4 \mathrm{~mm}^{2}$

Provide 10mm @ 200mm c/c
Short wall:
$\mathrm{A}_{\text {st(VL) }}=370.8+320=690.8 \mathrm{~mm}^{2}<\mathrm{A}_{\text {stmin }}$
Provide Astmin, 10 mm @ 200mm c/c
$\mathrm{A}_{\mathrm{st}(\mathrm{HL})}=2173.09 \mathrm{~mm}^{2}$
Provide 16mm @ 180mm c/c

Check for uplift:

The tank is checked for uplift pressure. When the uplift pressure exceeds the downward load due to the self weight of the tank and the frictional resistance required. The base slab is projected all around thereby increasing the downward load. The pressure of submerged earth and water at the bottom of the base slab for 1 m length of the wall is found. The frictional resistance of the tank is found by multiplying the coefficient of friction between soil and concrete with the pressure exerted.

Assume the thickness of the base slab as 400 mm and provide a projection of 300 mm all around the water tank.

Downward load due to self weight of tank:

$$
\begin{array}{rlrl}
\text { Long wall } & =2 \times 12.64 \times 0.32 \times 4 \times 25 & & =808.36 \mathrm{kN} \\
\text { Short wall }=2 \times 5 \times 0.32 \times 4 \times 25 & & =320 \mathrm{kN} \\
\text { Base slab } & =(12.64+0.6) \cdot(5.64+0.6) \times 0.4 \times 25 & =826.176 \mathrm{kN} \\
\text { Total } & & =\underline{1955.136 \mathrm{kN}}
\end{array}
$$

Weight of earth retained over projection,
Long wall $=2 \times(12.54+0.6) \times 4 \times 0.3 \times 16=508.42 \mathrm{kN}$
Short wall $=2 \times 5.64 \times 4 \times 0.3 \times 16=216.576 \mathrm{kN}$

$$
=\underline{724.996} \mathrm{kN}
$$

Total load $=\mathbf{2 6 8 0 . 1 3 2} \mathbf{~ k N}$

Frictional force required $=3635.174-2680.132=955 \mathrm{kN}$
Pressure exerted by water at a depth of 4.4 m ,

$$
\begin{aligned}
p & =H / 3 \cdot\left(\gamma-\gamma_{w}\right)+\gamma_{w} \cdot H \\
& =\frac{4.4}{3}(16-10)+10 \times 4.4=52.8 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Considering 1 m length of wall, the force exerted is $=1 / 2 \times \mathrm{H} \times \mathrm{p}$

$$
=1 / 2 \times 4.4 \times 52.8=116.16 \mathrm{kN} / \mathrm{m}
$$

The frictional resistance per metre length of wall $=\mu . F=0.15 \times 116.16=17.424 \mathrm{kN} / \mathrm{m}$ For the entire perimeter of the wall, the frictional resistance offered,

$$
=2 \times(12.64+5.64) \times 17.42=637 \mathrm{kN}<955 \mathrm{kN}
$$

Hence the downward load due to self weight and cantilever projection of bse slab is insufficient against the uplift force. The length of projection has to be increased. Increase the base projection to 0.7 m , all around.

Downward load due to self weight of tank:

$$
\begin{array}{rlr}
\text { Long wall }=2 \times 12.64 \times 0.32 \times 4 \times 25 & =808.36 \mathrm{kN} \\
\text { Short wall }=2 \times 5 \times 0.32 \times 4 \times 25 & =320 \mathrm{kN} \\
\text { Base slab }=(12.64+1.4) .(5.64+1.4) \times 0.4 \times 25 & =988.416 \mathrm{kN} \\
\text { Total } & =\underline{2116.78} \mathrm{kN}
\end{array}
$$

Weight of earth retained over projection,

$$
\begin{aligned}
\text { Long wall }=2 \times(12.54+1.4) \times 4 \times 0.3 \times 16 & =1257.98 \mathrm{kN} \\
\text { Short wall }=2 \times 5.64 \times 4 \times 0.7 \times 16 & =505.34 \mathrm{kN} \\
& =\underline{1763.32} \mathrm{kN}
\end{aligned}
$$

Total load $=\mathbf{3 8 8 0 . 1} \mathbf{~ k N}$

Frictional force required $=4349.03-3880=469.03 \mathrm{kN}<637 \mathrm{kN}$
(Frictional force offered by walls)
$\mathrm{p}=52.8 \mathrm{kN} / \mathrm{m}^{2}$.
The water tank is safe against uplift.

The base is design as a continuous slab, supported between two short walls, for the self weight and weight of side walls.

Design of base slab:

Loading on the base slab includes the self weight of base slab and weight of side walls.
Considering 1 m strip,
Weight of base slab $=7.04 \times 0.4 \times 25=70.4 \mathrm{kN} / \mathrm{m}$
Weight of walls $=2 \times 4 \times 0.32 \times 25=64 \mathrm{kN} / \mathrm{m}$
Total $\quad=\underline{134.4 \mathrm{kN} / \mathrm{m}}$

Reaction at the support $=134.4 \times 7.04 / 2=473.09 \mathrm{kN}$
B.M. at the support $=w . I^{2} / 2=134.4 \times 0.86^{2} / 2=49.7 \mathrm{kNm}$
B.M. at centre $=134.4 \times 3.522 / 2-473.09(2.66)=-425.8 \mathrm{kNm}$ [sagging moment]
$\mathrm{A}_{\text {st }}$ required $=\frac{M}{\sigma_{s t} \cdot j \cdot d}=\frac{425.8 \times 10^{6}}{150 \times 0.853 \times 365}=9118.2 \mathrm{~mm}^{2}$
[$\mathrm{D}=400 \mathrm{~mm}, \mathrm{~d}=400-35=365 \mathrm{~mm}$]
Provide 25 mm in two layers [both faces].
Provide 25 mm @ $100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ on both faces.

UNIT III

YIELD LINE THEORY

Yield lines－Typical crack patterns－generated when ultimate moment is reached Characteristics of yield lines are，
i）Yield lines are straight
ii）Yield lines end at supporting edges of slab
iii）Yield lines passes through intersection of axis of rotation of adjacent slab elements
iv）Axis of rotation lies along lines of supports and passes over columns

———Axis of Rotation
Beam Support
Point Load
Column Support

Notations For Yield Lines and Supports

Square Slab

Triangular Slab

Hexagonal Slab

Rectangular Slab
－

Rectangular Slab （Fixed support）

Circular Slab
Typical Yield Line Patterns in Reinforced Conc．ete Slabs

Assumptions：

The following are the assumptions of the yield line analysis of reinforced concrete slabs．
1．The steel reinforcement is fully yielded along the yield lines at collapse．Rotation following yield is at constant moment．
2．The slab deforms plastically at collapse and is separated into segments by the yield lines．The individual segments of the slab behave elastically．
3. The elastic deformations are neglected and plastic deformations are only considered. The entire deformations, therefore, take place only along the yield lines. The individual segments of the slab remain plane even in the collapse condition.
4. The bending and twisting moments are uniformly distributed along the yield lines. The maximum values of the moments depend on the capacities of the section based on the amount of reinforcement provided in the section.
5. The yield lines are straight lines as they are the lines of intersection between two planes.

Rules of yield lines:

The two terms, positive and negative yield lines, are used in the analysis to designate the yield lines for positive bending moments having tension at the bottom and negative bending moments having tension at the top of the slab, respectively.

The following are the guidelines for predicting the yield lines and axes of rotation:

1. Yield lines between two intersecting planes are straight lines.
2. Positive yield line will be at the mid-span of one-way simply supported slabs.
3. Negative yield lines will occur at the supports in addition to the positive yield lines at the mid-span of one-way continuous slabs.
4. Yield lines will occur under point loads and they will be radiating outward from the point of application of the point loads.
5. Yield line between two slab segments should pass through the point of intersection of the axes of rotation of the adjacent slab segments.
6. Yield lines should end at the boundary of the slab or at another yield line.
7. Yield lines represent the axes of rotation.
8. Supported edges of the slab will also act as axes of rotation. However, the fixed supports provide constant resistance to rotation having negative yield lines at the supported edges. On the other hand, axes of rotation at the simply supported edges will not provide any resistance to rotation of the segment.
9. Axis of rotation will pass over any column support, if provided, whose orientation will depend on other considerations.

Upper and Lower Bound Theorems

According to the general theory of structural plasticity, the collapse load of a structure lies in between the upper bound and lower bound of the true collapse load. Therefore, the solution employing the theory of plasticity should ensure that lower and upper bounds converge to the unique and correct values of the collapse load.

The statements of the two theorems applied to slabs are given below:
(A) Lower bound theorem: The lower bound of the true collapse load is that external load for which a distribution of moments can be found satisfying the requirements of equilibrium and boundary conditions so that the moments at any location do not exceed the yield moment.
(B) Upper bound theorem: The upper bound of the true collapse load is that external load for which the internal work done by the slab for a small increment of displacement, assuming that moment at every plastic hinge is equal to the yield moment and satisfying the boundary conditions, is equal to the external work done by that external load for the same amount of small increment of displacement.

Thus, the collapse load satisfying the lower bound theorem is always lower than or equal to the true collapse load. On the other hand, the collapse load satisfying the upper bound theorem is always higher than or equal to the true collapse load.

The yield line analysis is an upper bound method in which the predicted failure load of a slab for given moment of resistance (capacity) may be higher than the true value. Thus, the solution of the upper bound method (yield line analysis) may result into unsafe design if the lowest mechanism could not be chosen. However, it has been observed that the prediction of the most probable true mechanism in slab is not difficult. Thus, the solution is safe and adequate in most of the cases. However, it is always desirable to employ a lower bound method, which is totally safe from the design point of view.

Yield moments:
$m=M_{u}=0.87 \times f_{y} \times A_{\text {st }}\left(d-0.42 x_{u}\right)$

$\mathrm{m}_{\alpha} \cdot \mathrm{a} \cdot \mathrm{b}=\mathrm{m} \cdot \cos \alpha \cdot \mathrm{c} \cdot \mathrm{d} . \quad \rightarrow \mathrm{m}_{\alpha}=\left(\frac{c \cdot d}{a \cdot b}\right) \mathrm{m} \cdot \cos \alpha \quad \rightarrow \mathrm{m}_{\alpha}=\mathrm{m} \cdot \cos ^{2} \alpha$ where, $m \rightarrow$ yield moment per m length along the yield line

ii)

$$
\begin{aligned}
m_{\alpha} & =m \cdot \cos ^{2} \alpha+\mu m \cdot \cos ^{2} \cdot(90-\alpha) \\
& =m \cdot \cos ^{2} \alpha+\mu m \cdot \cos ^{2}(90-\alpha) \\
& =m \cdot \cos ^{2} \alpha+\mu m \cdot \sin ^{2} \alpha
\end{aligned}
$$

For isotropically reinforced slab,

$$
(\mu=1) \quad \& \quad m_{\alpha}=m
$$

When reinforcement is same horizontally and vertically, $\mu=1 \quad \& \quad m_{\alpha}=m$

Methods of yield line analysis:

1. Virtual work method
2. Equilibrium method (Equilibrium of individual elements of slab along yield line)

Virtual work method - Applied load causing virtual displacement is equal to internal work done or energy dissipated in rotation along the yield lines.
I) Isotropically reinforced - square slab - simply supported - udl

External work done $=\mathrm{w} . \delta$
Where, $\mathrm{w} \rightarrow$ load, $\delta \rightarrow$ virtual displacement
Internal work done = M. $\theta=\Sigma m . L . \theta$
$\mathrm{m} \rightarrow$ Ultimate moment / unit length
$L \rightarrow$ Length of yield line
$M \rightarrow$ Total moment produced along all the yield lines

[Opposite of isotropically reinforced is orthotropically reinforced]
Centre point is the place where the first ultimate moment is reached and the crack originates at this point as,
$\mathrm{L} / \sqrt{2}$

$$
\operatorname{Tan} \theta=1 /(L / \sqrt{2})=\sqrt{2} / L
$$

$$
\Sigma(\mathrm{M} . \theta)_{\mathrm{ac}}=\Sigma(\mathrm{m} \cdot \mathrm{~L} \cdot \theta)_{\mathrm{ac}}=\mathrm{m} \cdot \sqrt{2} \mathrm{~L} \cdot \frac{2 \sqrt{2}}{L}=4 \mathrm{~m} \quad\left[\frac{2 \sqrt{2}}{L} \rightarrow \text { since defl. Is on two sides }\right]
$$

Work done by 'bd' is same as 'ac'
Total internal work done $=\Sigma \mathrm{M} . \theta=8 \mathrm{~m}$
For a virtual displacement of 1 at centre (i.e) CG of each triangular deflects $1 / 3$
$\Sigma \mathrm{W} . \delta=[(1 / 2 \times L \times L / 2 \times w) \times 1 / 3] \times 4=\frac{w L^{2}}{3}, \quad$ where, $w \rightarrow$ udl on slab
$\Sigma \mathrm{M} . \theta=\Sigma \mathrm{W} . \delta \quad \rightarrow \quad 8 \mathrm{~m}=\frac{w l^{2}}{3} \quad \rightarrow \quad \mathrm{~m}=\frac{w l^{2}}{24}$
II) Isotropically reinforced - square slab - fixed on all edges - udl

External work done $=\mathrm{w} . \delta$
Where, $\mathrm{w} \rightarrow$ load, $\delta \rightarrow$ virtual displacement

$$
\text { Internal work done }=\Sigma \mathrm{M} \cdot \theta=\Sigma \mathrm{m} \cdot \mathrm{~L} \cdot \theta=\mathrm{m} \cdot \sqrt{2} \mathrm{~L} \cdot \frac{2 \sqrt{2}}{L}=4 \mathrm{~m}
$$

Work done by 'bd' is same as 'ac'
Total internal work done $=\Sigma \mathrm{M} . \theta=8 \mathrm{~m}$
Internal work done by negative yield line (ab, bc, cd, de) for,

$$
\Theta=1 / L / 2=2 / L, \quad \Sigma M \cdot \theta=4[w \times L \times 2 / L]=8 m
$$

Total internal work done $=16 \mathrm{~m}$
External work done,
$\Sigma W . \delta=[(1 / 2 \times L \times L / 2 \times w) \times 1 / 3] \times 4=w L^{2} / 3$
$\Sigma \mathrm{M} . \theta=\Sigma \mathrm{W} . \delta$
$16 \mathrm{~m}=\mathrm{wL}^{2} / 3 \quad \rightarrow \mathrm{~m}=\mathrm{wL}^{2} / 48$
$M \rightarrow$ moment per metre length along the yield line
III) Orthotropically reinforced (Diff. rein. bothways) - rectangular slab - simply supported - udl

For element A,

$$
\begin{aligned}
& \Theta_{x}=\frac{2}{\alpha L} \quad \& \quad \Theta_{y}=0 \\
& M_{x}=m L \\
& \left(M_{x} \cdot \Theta_{x}+M_{y} \cdot \Theta_{y}\right]_{A}=\frac{2 m}{\alpha}
\end{aligned}
$$

For element D,
Internal work done,

$$
\begin{aligned}
& \Theta_{x}=0, \Theta_{y}=1 /(\beta L), \mathrm{M}_{\mathrm{y}}=\alpha . \mathrm{L} . \mu \mathrm{m} \\
& \Sigma \mathrm{M} . \theta=2 \mathrm{x}\left[\frac{2 m}{\alpha}+\frac{\alpha \mu m}{\beta}\right]
\end{aligned}
$$

External work done $=\Sigma \mathrm{w} . \delta$
$\mathrm{m}=\frac{w \cdot \alpha^{2} L^{2}}{24}\left[\sqrt{\left(3+\mu \alpha^{2}\right.}-\alpha \sqrt{\mu}\right]^{2}$
IV) Orthotropically reinforced - rectangular slab - fixed along long edges - simply supported along short edges - udl
$\mathrm{m}=\frac{w_{u} L_{x}{ }^{2}}{24}\left(\frac{\tan ^{2} \phi}{\mu}\right), \quad$ where, $\tan \phi=\left(1.5 \mu+\frac{\mu^{2}}{4 \alpha^{2}}\right)-\left(\frac{\mu}{2 \alpha}\right)$
$\mu \rightarrow$ Coefficient of orthotrophy [Ratio between reinforcement provided along shorter direction and longer direction]
V) Orthotropically reinforced - rectangular slab - all four edges fixed - udl
$\mathrm{m}=\frac{w_{u} L_{y}^{2}}{48}\left(\frac{\tan ^{2} \phi}{\mu}\right)$

1. Design a square slab fixed along all four edges, which is of side 5 m . The slab has to support a service load of $4 \mathrm{kN} / \mathrm{m}^{2}$. Use M20 concrete and Fe415 steel.
As per IS 456-2000,

$$
\mathrm{l} / \mathrm{d}=(0.8 \times 35)=28 \rightarrow 5000 / 28=\mathrm{d}
$$

$\rightarrow \mathrm{d}=178.6 \mathrm{~mm}=180 \mathrm{~mm}$
Provide D $=200 \mathrm{~mm}$
Loading on slab:
Self weight $=0.2 \times 25=5 \mathrm{kN} / \mathrm{m}^{2}$
Live load $\quad=4 \mathrm{kN} / \mathrm{m}^{2}$
Floor finish $\quad=1 \mathrm{kN} / \mathrm{m}^{2}$
Total $\quad=10 \mathrm{kN} / \mathrm{m}^{2}$
Factored load $\left(\mathrm{w}_{\mathrm{u}}\right)=1.5 \times 10=15 \mathrm{kN} / \mathrm{m}^{2}$
By yield line theory, $m=\frac{w L^{2}}{48}=7.8125 \mathrm{kNm}$
Limiting moment, $\mathrm{M}_{\mathrm{ulim}}=0.138 . \mathrm{f}_{\mathrm{ck}} \cdot \mathrm{b} \cdot \mathrm{d}^{2}=0.138 \times 20 \times 1000 \times 180^{2}=89.424 \times 10^{6} \mathrm{Nmm}$
$\mathrm{Mu}<$ Mulim
$\mathrm{K}=\frac{M_{u}}{b d^{2}}=0.241$
$\mathrm{A}_{\mathrm{st}}=122 \mathrm{~mm}^{2}$
Provide 8 mm @ $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

1b) In the above problem, design the slab using IS456 coefficient method.
$\mathrm{l}_{\mathrm{y}} / \mathrm{I}_{\mathrm{x}}=1$
Four edges are discontinuous
$\alpha_{x}=\alpha_{y}=0.056$
$M_{x}=\alpha_{x} \cdot w \cdot I_{x}^{2}=0.056 \times 15 \times 5^{2}=21 \mathrm{kNm}$
$M_{y}=\alpha_{y} \cdot w \cdot I_{x}^{2}=0.056 \times 15 \times 5^{2}=21 \mathrm{kNm}$
\rightarrow Required spacing of 8 mm bar is 140 mm .
Provide 8mm @ 140mm c/c.
2. Design a square slab of size 5 m , simply supported along its four edges and subjected to a live load of $4 \mathrm{kN} / \mathrm{m}^{2}$.
$m=\frac{w L^{2}}{24}$

As per IS 456-2000,
$1 / d=(0.8 \times 35)=28 \rightarrow 5000 / 28=d$
$\rightarrow \mathrm{d}=178.6 \mathrm{~mm}=180 \mathrm{~mm}$
Provide D = 200mm
Loading on slab:

Self weight $=0.2 \times 25$	$=5 \mathrm{kN} / \mathrm{m}^{2}$
Live load	$=4 \mathrm{kN} / \mathrm{m}^{2}$
Floor finish	
	Total
	$=1 \mathrm{kN} / \mathrm{m}^{2}$
	$=10 \mathrm{kN} / \mathrm{m}^{2}$

Factored load $\left(\mathrm{w}_{\mathrm{u}}\right)=1.5 \times 10=15 \mathrm{kN} / \mathrm{m}^{2}$
By yield line theory, $m=\frac{w L^{2}}{24}=15.625 \mathrm{kNm}$
Limiting moment, $\mathrm{M}_{\mathrm{ulim}}=0.138 . \mathrm{f}_{\mathrm{ck}} \cdot \mathrm{b}^{2} \mathrm{~d}^{2}=0.138 \times 20 \times 1000 \times 180^{2}=89.424 \times 10^{6} \mathrm{Nmm}$
Mu < Mulim
$\mathrm{A}_{\mathrm{st}}=247.59 \mathrm{~mm}^{2}$
Provide 8 mm @ 200 mm c/c
3. Design a rectangular slab of size $4 \mathrm{~m} \times 6 \mathrm{~m}$ simply supported along all its edges, subjected to a live load of $4 \mathrm{kN} / \mathrm{m}^{2}$. The coefficient of orthotrophy is 0.7 . Use M20 and Fe415.

For four edges simply supported condition,
$\mathrm{m}=\frac{w \cdot \alpha^{2} L^{2}}{24}\left[\sqrt{\left(3+\mu \alpha^{2}\right.}-\alpha \sqrt{\mu}\right]^{2}$
Assume span/depth $=28 \rightarrow$ Eff.depth $=4000 / 28=142.86 \mathrm{~mm}$
Provide $d=150 \mathrm{~mm}, \mathrm{D}=170 \mathrm{~mm}$
Loading on slab:

Self weight $=0.17 \times 25$	$=4.25 \mathrm{kN} / \mathrm{m}^{2}$
Live load	
Floor finish	$=4 \mathrm{kN} / \mathrm{m}^{2}$
	$=0.75 \mathrm{kN} / \mathrm{m}^{2}$
Total	$=\underline{9 \mathrm{kN} / \mathrm{m}^{2}}$

Factored load $\left(w_{u}\right)=1.5 \times 9=13.5 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{m}=\frac{w \cdot \alpha^{2} L^{2}}{24}\left[\sqrt{\left(3+\mu \alpha^{2}\right.}-\alpha \sqrt{\mu}\right]^{2} \quad=8.8209 \times 1.602=14.13 \mathrm{kNm}$
Limiting moment, $\mathrm{M}_{\mathrm{ulim}}=0.138 . \mathrm{f}_{\mathrm{ck}} \cdot \mathrm{b} \cdot \mathrm{d}^{2}=62.1 \mathrm{kNm}$
$\mathrm{Mu}<$ Mulim. The section is under-reinforced.
$\mathrm{K}=\mathrm{Mu} / \mathrm{b} . \mathrm{d}^{2} \rightarrow \mathrm{~A}_{\mathrm{st}}=277 \mathrm{~mm}^{2}$
Minimum $A_{\text {st }}=0.12 \%$ of $\mathrm{c} / \mathrm{s}=204 \mathrm{~mm}^{2}$
$A_{s t}$ along longer span $=\mu \times A_{s t}=0.7 \times 237=194 \mathrm{~mm}^{2}<204 \mathrm{~mm}^{2}$
Provide 8mm @ 240mm c/c
Check for shear (factored):
$\mathrm{V}_{\mathrm{u}}=\frac{w_{u} \cdot l_{x}}{2}=13.5 \times 4 / 2=27 \mathrm{kN}$
$K . \zeta_{v}=\frac{V_{u}}{b d}=\frac{27 \times 10^{3}}{1000 \times 150}=0.18 \mathrm{~N} / \mathrm{mm}^{2}$
ζ_{c} for $\left[100 \mathrm{~A}_{\mathrm{st}} / \mathrm{bd}=(100 \times 277) /(1000 \times 150)=0.185 \mathrm{~N} / \mathrm{mm}^{2}\right]$
$0.15 \rightarrow 0.28$
$0.25 \rightarrow 0.36$
$0.185 \rightarrow 0.308$
As per Cl.42.4 of IS456-2000,
$\begin{array}{ll}K \rightarrow 1.3 & \text { for } d=150 \mathrm{~mm} \\ K \rightarrow 1 & \text { for } d=300 \mathrm{~mm} \\ K \rightarrow((1.126+0.133)=1.26) & \text { for } d=170 \mathrm{~mm}\end{array}$
K. $\zeta_{c}=1.26 \times 0.308=0.388 \mathrm{~N} / \mathrm{mm}^{2}>\zeta_{\mathrm{V}}\left(0.18 \mathrm{~N} / \mathrm{mm}^{2}\right)$

Section is safe in shear.
4. In the above problem, design the slab if all the supports are fixed.

For four edges simply supported condition,
$\mathrm{m}=\frac{w \cdot L_{y}{ }^{2}}{48}\left[\frac{\tan ^{2} \phi}{\mu}\right]$,
where, $\tan \varphi=\left(1.5 \mu+\frac{\mu^{2}}{4 \alpha^{2}}\right)-\frac{\mu}{2 \alpha}$
$\mu=0.7, \alpha=0.66, \tan \varphi=0.8, \varphi=38.65^{\circ}$

Assume span/depth $=28 \rightarrow$ Eff.depth $=4000 / 28=142.86 \mathrm{~mm}$
Provide $d=150 \mathrm{~mm}, \mathrm{D}=170 \mathrm{~mm}$
Loading on slab:
Self weight $=0.17 \times 25=4.25 \mathrm{kN} / \mathrm{m}^{2}$
Live load $\quad=4 \mathrm{kN} / \mathrm{m}^{2}$
Floor finish $\quad=0.75 \mathrm{kN} / \mathrm{m}^{2}$

$$
\text { Total } \quad=9 \mathrm{kN} / \mathrm{m}^{2}
$$

Factored load $\left(w_{u}\right)=1.5 \times 9=13.5 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{m}=\frac{w \cdot L_{y}{ }^{2}}{48}\left[\frac{\tan ^{2} \phi}{\mu}\right]=\frac{13.5 x 6^{2}}{48}\left[\frac{0.801^{2}}{0.7}\right]=9.28 \mathrm{kNm}$
Limiting moment, $\mathrm{M}_{\mathrm{ulim}}=0.138 . \mathrm{f}_{\mathrm{ck}} \cdot \mathrm{b} \cdot \mathrm{d}^{2}=62.1 \mathrm{kNm}$
$M_{u}<M_{u l i m}$. The section is under-reinforced.
$K=M u / b . d^{2} \rightarrow A_{s t}=175 \mathrm{~mm}^{2}$
Minimum $A_{\text {st }}=0.12 \%$ of $\mathrm{c} / \mathrm{s}=204 \mathrm{~mm}^{2}$
$A_{\text {st }}$ along longer span $=\mu \times A_{\text {st }}=0.7 \times 175=122.5 \mathrm{~mm}^{2}<204 \mathrm{~mm}^{2}$
Provide 8 mm @ 240mm c/c bothways [Min. A_{st}]
Check for shear (factored): $\{$ No change $\}$
$\mathrm{V}_{\mathrm{u}}=\frac{w_{u} \cdot l_{x}}{2}=13.5 \times 4 / 2=27 \mathrm{kN}$
$\mathrm{K} . \zeta_{\mathrm{v}}=\frac{V_{u}}{b d}=\frac{27 \times 10^{3}}{1000 \times 150}=0.18 \mathrm{~N} / \mathrm{mm}^{2}$
ζ_{c} for $\left[100 \mathrm{~A}_{\mathrm{st}} / \mathrm{bd}=(100 \times 277) /(1000 \times 150)=0.185 \mathrm{~N} / \mathrm{mm}^{2}\right]$
$0.15 \rightarrow 0.28$
$0.25 \rightarrow 0.36$
$0.185 \rightarrow 0.308$
As per Cl.42.4 of IS456-2000,
$K \rightarrow 1.3 \quad$ for $d=150 \mathrm{~mm}$
$K \rightarrow 1$
for $d=300 \mathrm{~mm}$
$K \rightarrow((1.126+0.133)=1.26) \quad$ for $d=170 \mathrm{~mm}$
K. $\zeta_{C}=1.26 \times 0.308=0.388 \mathrm{~N} / \mathrm{mm}^{2}>\zeta_{\mathrm{V}}\left(0.18 \mathrm{~N} / \mathrm{mm}^{2}\right)$

Section is safe in shear.
5. Solve the above problem if two long edges are fixed.
$\mathrm{m}=\frac{w_{u} L_{x}^{2}}{24}\left(\frac{\tan ^{2} \phi}{\mu}\right)$
Provide 8 mm @ 240mm bothways.

Triangular slab:

I) Isotropically reinforced - Equilateral triangular slab - simply supported along all edges udl
$\mathrm{M}=\frac{w_{u} L^{2}}{72}$
II) Isotropically reinforced - Equilateral triangular slab - simply supported along two adjacent edges - udl
$M=\frac{w_{u} \alpha L^{2}}{6} \operatorname{Sin}^{2} \frac{\beta}{2}$
III) Isotropically reinforced - Right angled triangular slab - simply supported along all edges -udl
$\mathrm{M}=\frac{w_{u} \alpha L^{2}}{6}$
IV) Isotropically reinforced - Circular slab - simply supported along edges - udl

Failure takes place by formation of infinite number of positive yield lines running radially from centre to circumference, forming a flat cone at collapse.
$\mathrm{M}=\frac{w_{u} r^{2}}{6}$
6. Design an equilateral triangular slab of side 5 m , isotropically reinforced and is simply supported along its edges. The slab is subjected to a superimposed load of $3 \mathrm{kN} / \mathrm{m} 2$. Use M20 concrete and Fe415 steel.
Assume span/depth $=28 \rightarrow$ Eff.depth $=5000 / 28=178.57 \mathrm{~mm}$
Provide d $=180 \mathrm{~mm}, \mathrm{D}=200 \mathrm{~mm}$
Loading on slab:

Self weight $=0.2 \times 25$	$=5 \mathrm{kN} / \mathrm{m}^{2}$
Live load	$=3 \mathrm{kN} / \mathrm{m}^{2}$
Floor finish	$=1 \mathrm{kN} / \mathrm{m}^{2}$
	Total
	$=9 \mathrm{kN} / \mathrm{m}^{2}$

Factored load $\left(w_{u}\right)=1.5 \times 9=13.5 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{m}=\frac{w_{u} L^{2}}{72}=4.688 \mathrm{kNm}$
Limiting moment, $\mathrm{M}_{\mathrm{ulim}}=0.138 . \mathrm{f}_{\mathrm{ck}} \cdot \mathrm{b} \cdot \mathrm{d}^{2}=89.42 \mathrm{kNm}$
$\mathrm{Mu}<$ Mulim. The section is under-reinforced.
$\mathrm{K}=\mathrm{Mu} / \mathrm{b} . \mathrm{d}^{2} \rightarrow \mathrm{~A}_{\mathrm{st}}=72.754 \mathrm{~mm}^{2}$
Minimum $A_{s t}=0.12 \%$ of $\mathrm{c} / \mathrm{s}=240 \mathrm{~mm}^{2}$
$\mathrm{A}_{\mathrm{st}}<\min$ Ast [240 mm ${ }^{2}$]
Provide 8mm @ 200mm c/c
Check for shear (factored):
$\mathrm{V}_{\mathrm{u}}=\frac{w_{u} \cdot l_{x}}{2}=13.5 \times 5 / 2=33.75 \mathrm{kN}$
$\mathrm{K} . \zeta_{v}=\frac{V_{u}}{b d}=\frac{27 \times 10^{3}}{1000 \times 150}=0.1875 \mathrm{~N} / \mathrm{mm}^{2}$
ζ_{c} for $\left[100 \mathrm{~A}_{\mathrm{st}} / \mathrm{bd}=(100 \times 277) /(1000 \times 150)=0.185 \mathrm{~N} / \mathrm{mm}^{2}\right]$
$0.13 \rightarrow 0.28$
As per CI.42.4 of IS456-2000,
$K \rightarrow 1.3$
for $d=150 \mathrm{~mm}$
$K \rightarrow 1$
for $d=300 \mathrm{~mm}$
$K \rightarrow((1.04+0.2)=1.24)$ for $d=180 \mathrm{~mm}$
K. $\zeta_{c}=1.24 \times 0.28=0.3472 \mathrm{~N} / \mathrm{mm}^{2}>\zeta_{\mathrm{v}}\left(0.18 \mathrm{~N} / \mathrm{mm}^{2}\right)$

Section is safe in shear.

UNIT IV

MISCELLANEOUS STRUCTURES [STAIRCASE, FLAT SLAB, RC WALL]

DESIGN OF STAIRCASE

GEOMETRICAL TYPES OF STAIRCASE:

(e) spiral stairs

PLAN VIEWS

(f) helicoidal stairs

Common geometrical configurations of stairs

(a)

PLAN

A typical flight in a staircase

$$
\begin{gathered}
l=G+X+y \\
x=X \text { or } 1 \mathrm{~m} \text { (whichever is less) } \\
y=Y \text { or } 1 \mathrm{~m} \text { (whichever is less) }
\end{gathered}
$$

(a) transversely spanning landings
support of landing

(b) landings supported on three edges

Special support conditions for longitudinally spanning stair slabs

- Based on loading and support conditions:
- Spanning along transverse direction

Cantilever staircase
Slab supported between stringer beams

(a) slab cantilevered from a spandrel beam or wall

(b) slab doubly cantilevered from a central spine beam

(c) slab supported between two stringer beam or walls

Typical examples of stair slabs spanning transversely

- Spanning along longitudinal direction
[Most commonly adopted]

(a) simply supported arrangement

(i)
(ii)
(iii)
(b) alternative support arrangement

Typical examples of stair slabs spanning longitudinally

Loading on staircase:
Dead load:

- Self weight of slab
- Self weight of step
- Tread finish $\quad\left[0.6-1 \mathrm{kN} / \mathrm{m}^{2}\right]$

Live load:
For overcrowding $\rightarrow 5 \mathrm{kN} / \mathrm{m}^{2}$
No overcrowding $\rightarrow 3 \mathrm{kN} / \mathrm{m}^{2}$

For independent cantilever state, the following live load condition is also checked:

STAIRCASE SPANNING TRANSVERSELY

1) A straight staircase is made of structurally independent tread slab cantilevered from a $R C$ wall. Given, the riser is 150 mm and tread is 300 mm with width of flight 1.5 m . Design a typical cantilever tread slab. Apply live load for overcrowding. Use M20 concrete and Fe250 steel.

Loading on the staircase (0.3 m width)

Dead load:
Self weight of tread slab $=25 \times 0.15 \times 0.3=1.125 \mathrm{kN} / \mathrm{m}$
Floor finish $(0.6 \mathrm{kN} / \mathrm{m} 2)=0.6 \times 0.3 \quad=0.18 \mathrm{kN} / \mathrm{m}$
Total $\quad=1.305 \mathrm{kN} / \mathrm{m}$
Dead load moment, $M_{D}=1.305 \times 1.5^{2} / 2=1.468 \mathrm{kNm}$

Live load: Maximum of,
i) Overcrowding $\rightarrow 5 \mathrm{kN} / \mathrm{m}^{2}$

$$
\begin{aligned}
& \text { L.L. }=5 \times 0.3=1.5 \mathrm{kN} / \mathrm{m} \\
& \mathrm{M}_{\mathrm{L}}=\mathrm{wl}^{2} / 2=1.5 \times 1.5^{2} / 2=1.69 \mathrm{kNm}
\end{aligned}
$$

ii)

$$
\mathrm{M}_{\mathrm{L}}=1.3 \times 1.5=1.95 \mathrm{kNm}
$$

The maximum of the above two values is $\mathrm{M}_{\mathrm{L}}=\underline{1.95 \mathrm{kNm}}$
Total moment $=1.468+1.95=3.42 \mathrm{kNm}$
Factored moment $=5.13 \mathrm{kNm}$
Effective depth $=150-(20+10 / 2)=125 \mathrm{~mm}$
[Slab cover $\rightarrow 15 \mathrm{~mm}$ to 20 mm]
$M_{u}=0.87 \cdot f_{y} \cdot A_{s t} \cdot\left(d-0.42\left(\frac{0.87 \cdot f_{y} A_{s t}}{0.36 \cdot f_{c k} \cdot b}\right)\right) \quad[\mathrm{OR}] \quad \mathrm{K}=\frac{M_{u}}{b d^{2}} \rightarrow$ Take p_{t} from SP16
$5.13 \times 10^{6}=65.25 \times 10^{3} . \mathrm{A}_{\mathrm{st}}-9.19 . \mathrm{A}_{\mathrm{st}}{ }^{2}$
$\rightarrow \mathrm{A}_{\mathrm{st}}=202 \mathrm{~mm}^{2}$
No. of bars $=\frac{A_{s t}}{a_{s t}}=\frac{202}{\pi \cdot 10^{2} / 4}=3$
3 nos. of $10 \mathrm{~mm} \varphi$ are provided at the top.
Distribution steel:
MS $\rightarrow 0.15 \%$ of $\mathrm{c} / \mathrm{s} \rightarrow 0.15 / 100 \times 300 \times 150=67.5 \mathrm{~mm}^{2}$
Spacing $=1000 \times \frac{a_{s t}}{A_{s t}}=744.67 \mathrm{~mm}$
Provide 8mm @ $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Check for shear:
$\zeta_{v}=V_{u} / b . d$
Shear force due to dead load $=w . l=1.305 \times 1.5=1.958 \mathrm{kN}$
Shear force due to live load,
i) $\quad 1.5 \times 1.5=2.25 \mathrm{kN}$
ii) $\quad 1.3 \mathrm{kN}$
$\mathrm{V}_{\mathrm{u}}=2.25+1.958=4.208 \mathrm{kN}$

Factored $\mathrm{Vu}=6.312 \mathrm{kN}$
As per Cl.40.2.1.1, IS456-2000, ζ_{c} value is modified when thickness is less than 300 mm
Upto a depth of $150 \mathrm{~mm}, \rightarrow \mathrm{~K}=1.3$
When depth is $>300 \mathrm{~mm}, \rightarrow \mathrm{~K}=1$
Development length $=\frac{\phi \cdot \sigma_{s}}{4 \tau_{b d}}=453.125 \mathrm{~mm}$
Provide a development length of 450 mm
Providing a 90° bent, length required $=450-80=370 \mathrm{~mm}$
$\zeta_{v}=\frac{V_{u}}{b . d}=0.168 \mathrm{~N} / \mathrm{mm}^{2}$
For $\mathrm{p}_{\mathrm{t}}=\frac{100 A_{s}}{b . d}=0.54 \%$,
$\zeta_{\mathrm{c}}=1.3 \times 0.4928=0.6406 \mathrm{~N} / \mathrm{mm}^{2}$
$\zeta_{v}<\zeta_{c}$
Hence, safe.

2) Design a waist slab type staircase comprising of a straight flight of steps supported between two stringer beams along the two sides. Assume an effective span 1.5 m , a riser of 150 mm and tread of 270 mm . Assume a live load of $3 \mathrm{kN} / \mathrm{m}^{2}$. Use M20 concrete and Fe250 steel. Assume mild exposure condition.

S - Stringer beam

The staircase is spanning along the transverse direction.
The main reinforcement should be provided along the transverse direction and distribution steel is provided at the top.

Inclined length of one step $=\sqrt{R^{2}+T^{2}}=308.87 \mathrm{~mm} \sim 309 \mathrm{~mm}$
The loading on the slab is found for an inclined width of 309 mm , which is later converted for 1m length.

Assume $\mathrm{I} / \mathrm{d}=30 \rightarrow 1500 / \mathrm{d}=30 \rightarrow \mathrm{~d}=50 \mathrm{~mm}$
Assume $d=60 \mathrm{~mm}$
$D=60+$ cover + Bar dia. $/ 2=60+20+10 / 2=85 \mathrm{~mm}$

Loading on slab over each tread width:

Self weight of slab	$=0.309 \times 25 \times 0.085$	$=0.657 \mathrm{kN} / \mathrm{m}$	
Self weight of step	$=1 / 2 \times 0.15 \times 0.27 \times 25$	$=0.50625 \mathrm{kN} / \mathrm{m}$	
Tread finish	$=0.27 \times 0.6$		$=0.162 \mathrm{kN} / \mathrm{m}$
Live load $\left(3 \mathrm{kN} / \mathrm{m}_{2}\right)$	$=0.27 \times 3$	$=0.81 \mathrm{kN} / \mathrm{m}$	
		Total	$=\underline{2.135 \mathrm{kN} / \mathrm{m}}$

The load $2.135 \mathrm{kN} / \mathrm{m}$ acts vertically downwards. The load acting along the inclined slab is the cosine value of the above.
$\rightarrow 2.135 \times \cos \theta=2.135(270 / 309)=1.866 \mathrm{kN} / \mathrm{m}$
The distributed load for 1 m step along the inclined slab is $1.86 \times 1 / 0.309=6.02 \mathrm{kN} / \mathrm{m}$ Factored load $=9.03 \mathrm{kN} / \mathrm{m}$
$\mathrm{M}=\mathrm{wl}^{2} / 8=9.03 \times 1.5^{2} / 8=2.54 \mathrm{kNm}$
$2.54 \times 10^{6}=0.87 .250 . A_{s t}\left(60-0.42\left(\frac{0.87 \times 250 x A_{s t}}{0.36 \times 20 \times 1000}\right)\right)$
$\rightarrow \mathrm{A}_{\mathrm{st}}=205.72 \mathrm{~mm}^{2} / \mathrm{m}$
Provide 8 mm , spacing required is $240 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Spacing $<[300 \mathrm{~mm}$ and $3 \mathrm{~d}=180 \mathrm{~mm}$]
Provide 8mm @ 180mm c/c
Distribution steel:
MS $\rightarrow 0.15 \%$ of c / s
$=0.15 / 100 \times 1000 \times 60=90 \mathrm{~mm}^{2}$
Provide $6 \mathrm{~mm} \varphi$, spacing required $=314.15 \mathrm{~mm}<(5 \mathrm{~d}=300 \mathrm{~mm})$
Provide 6 mm @ 300mm c/c

STAIRCASE SPANNING LONGITUDINALLY

1) Design the staircase slab shown in figure. The stairs are simply supported on beams provided at the first riser and at the edge of upper landing. Assume a floor finish of $0.8 \mathrm{kN} / \mathrm{m}^{2}$ and a live load of $5 \mathrm{kN} / \mathrm{m}^{2}$. Use M20 concrete and Fe415 steel. Assume mild exposure condition.
$\mathrm{L}=3+1.5+(0.15+0.15)=4.8 \mathrm{~m}$
Assume L/d as 20,
$4.8 / \mathrm{d}=20 \rightarrow \mathrm{~d}=240 \mathrm{~mm}$
$D=240+20+10 / 2=265 \mathrm{~mm}$

Loading on going slab:
Length of the inclination of one step is $\sqrt{R^{2}+T^{2}}$,
Where, $R=150 \mathrm{~mm}, \mathrm{~T}=300 \mathrm{~mm}$
$\mathrm{L}=335.41 \mathrm{~mm}$
Self weight of waist slab $=25 \times\left(0.265 \times(0.3354 / 0.3)=7.4 \mathrm{kN} / \mathrm{m}^{2}\right.$
Self weight of step $\quad=25 \times 1 / 2 \times 0.15 \quad=1.875 \mathrm{kN} / \mathrm{m}^{2}$
Floor finish $\quad=0.8 \mathrm{kN} / \mathrm{m}^{2}$
Live load

$$
\text { Total } \quad=15 \mathrm{kN} / \mathrm{m}^{2}
$$

Loading on going slab:
Self weight of slab $=25 \times 0.265$
Floor finish
Live load

$$
=6.625 \mathrm{kN} / \mathrm{m}^{2}
$$

$=0.8 \mathrm{kN} / \mathrm{m}^{2}$
$=5 \mathrm{kN} / \mathrm{m}^{2}$
Total $\quad=12.425 \mathrm{kN} / \mathrm{m}^{2}$
Considering 1 m strip,
The staircase slab is idealized as given below:

$R_{A} \times 4.8-(15 \times 3.45 \times 3.075)-(12.425 \times 0.675 \times 1.35)=0$
$\mathrm{R}_{\mathrm{A}}=35.69 \mathrm{kN}, \quad \mathrm{R}_{\mathrm{B}}=33.11 \mathrm{kN}$

$\mathrm{Xo}=\mathrm{R}_{\mathrm{A}} / \mathrm{udl}=35.69 / 15=2.37 \mathrm{~m}$
Moment at 2.37 m is,
$35.69 \times 2.37-(15 \times 2.37 \times 2.37 / 2)=42.23 \mathrm{kNm}$
Factored moment $=63.35 \mathrm{kNm}$
$M_{u}=0.87 \cdot f_{y} \cdot A_{s t}\left(d-0.42\left(\frac{0.87 \cdot f_{y} A_{s t}}{0.36 \cdot f_{c k} \cdot b}\right)\right) \quad[\mathrm{OR}] \quad \mathrm{K}=\frac{M_{u}}{b d^{2}} \rightarrow$ Take p_{t} from SP16
$63.35 \times 10^{6}=86.625 \times 10^{3} . \mathrm{A}_{\mathrm{st}}-7.604 . \mathrm{A}_{\mathrm{st}}{ }^{2}$
$\rightarrow A_{\text {st }}=785.19 \mathrm{~mm}^{2}$
Provide 10mm @ 100mm c/c
Distribution steel:
0.12% of $\mathrm{c} / \mathrm{s} \rightarrow 0.12 / 100 \times 1000 \times 265=318 \mathrm{~mm}^{2}$
Provide 8mm @ 150mm c/c
Check for shear:
$\zeta v=V_{u} / b . d$
Maximum shear force $=[35.69-(15.08 \times 0.24)] \times 1.5=48.1 \mathrm{kN}$
$\zeta_{v}=\frac{V_{u}}{b . d}=\frac{48.1 \times 10^{3}}{1000 \times 240}=0.2 \mathrm{~N} / \mathrm{mm}^{2}$
$p_{t}=100 . A_{s t} / b . d=0.327 \%$
For 0.25\% $\quad \rightarrow \quad 0.36$
For 0.5\% $\rightarrow 0.48 \quad$ For 0.33\% \rightarrow 0.0.398
$\zeta_{\mathrm{c}}=0.398 \mathrm{~N} / \mathrm{mm}^{2}$
The ζ_{c} value is modified based on Cl .40.2.1.1 for $\mathrm{D}=265 \mathrm{~mm}$
For $D=150 \mathrm{~mm}, \quad 1.3$
For $\mathrm{D}=300 \mathrm{~mm}, \quad 1 \quad$ For $\mathrm{D}=265 \mathrm{~mm}, 1.07$
$\zeta_{c \text { modified }}=1.07 \times 0.398=0.426 \mathrm{~N} / \mathrm{mm}^{2}$
$\zeta_{v}<\zeta_{c}$
Hence, safe.
2) Design a dog legged staircase having a waist slab for an office building for the following data:
i) Height between floor $=3.2 \mathrm{~m}$
ii) Riser $=160 \mathrm{~mm}$
iii) Tread $=270 \mathrm{~mm}$
iv) Width of flight is equal to the landing width $=1.25 \mathrm{~m}$
$\mathrm{LL}=5 \mathrm{kN} / \mathrm{m}^{2}, \mathrm{FF}=0.6 \mathrm{~N} / \mathrm{mm}^{2}$
Assume the stairs to be supported on 230 mm thick masonry walls at the outer edges of the landing parallel to the risers. Use M20 concrete and Fe415 steel.
Note : Based on riser, number of steps is found. Based on tread, length of staircase is found.
No. of steps $=3.2 / 0.16=20$
10 numbers of steps are used for first flight and other 10 to the second flight.
Loading on going:
Self weight of waist slab $=25 \times 0.283 \times(0.31385 / 0.270)=8.22 \mathrm{kN} / \mathrm{m}^{2}$
Self weight of step
$=25 \times 1 / 2 \times 0.16$
$=2 \mathrm{kN} / \mathrm{m}^{2}$
$=0.6 \mathrm{kN} / \mathrm{m}^{2}$
$=5 \mathrm{kN} / \mathrm{m}^{2}$
$=15.82 \mathrm{kN} / \mathrm{m}^{2}$

Loading on landing slab:
Self weight of slab $=25 \times 0.283=7.075 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{l} / \mathrm{d}=20 \quad \rightarrow \quad 5.16 / \mathrm{d}=20$
$\rightarrow \mathrm{d}=258 \mathrm{~mm}$
$D=258+20+10 / 2=283 \mathrm{~mm}$
Length of inclination of one step,

$$
\mathrm{R}=160 \mathrm{~mm}, \mathrm{~T}=270 \mathrm{~mm}, \mathrm{~L}=313.85 \mathrm{~mm}
$$

Self weight of slab $=25 \times 0.283=7.075 \mathrm{kN} / \mathrm{m}^{2}$
FF

$$
=0.6 \mathrm{kN} / \mathrm{m}^{2}
$$

LL

$$
=5 \mathrm{kN} / \mathrm{m}^{2}
$$

$$
\text { Total } \quad=\underline{12.675} \mathrm{kN} / \mathrm{m}^{2}
$$

$R_{A} \times 5.16-(12.675 \times 1.365 \times 4.4775)-(15.82 \times 2.43 \times 2.58)-(12.675 \times 1.365 \times 0.6875)=0$ $\mathrm{R}_{\mathrm{A}}=36.54 \mathrm{kN}$
$\mathrm{R}_{\mathrm{B}}=36.51 \mathrm{kN}$
Maximum moment at centre $=36.5 \times 2.58-(12.675 \times 1.365 \times(0.6825 \times 1.215)-(15.82 \times$
$\left.1.215^{2} / 2\right)=49.66 \mathrm{kNm}$
Factored moment $=74.49 \mathrm{kNm}$
$M_{u}=0.87 \cdot f_{y} \cdot A_{s t}\left(d-0.42\left(\frac{0.87 \cdot f_{y} A_{s t}}{0.36 \cdot f_{c k} \cdot b}\right)\right)$
$\mathrm{b}=1000 \mathrm{~mm}, \mathrm{~d}=258 \mathrm{~mm}$
$74.49 \times 10^{6}=93.15 \times 10^{3} \mathrm{~A}_{\mathrm{st}}-7.4 \mathrm{~A}_{\mathrm{st}}{ }^{2}$
$\mathrm{A}_{\mathrm{st}}=868.99 \mathrm{~mm}^{2}$
Provide 12mm φ @ 130mm c/c
Distribution steel:
0.15% of $c / s=0.15 / 100 \times 1000 \times 283=424.5 \mathrm{~mm}^{2}$
8 mm @ 110 mm c/c
Check for shear:
$\zeta_{v}=V_{U} / b . d$
Maximum shear force $=[36.5-(12.675 \times 0.258)] \times 1.5=49.84 \mathrm{kN}$
$\zeta_{\mathrm{v}}=0.193 \mathrm{~N} / \mathrm{mm}^{2}$
ζ_{c} :
$\mathrm{Pt}=100 . A s t / b . d=0.336 \%$
For pt $=0.25 \% \quad \rightarrow 0.36$
For pt $=0.5 \% \quad \rightarrow 0.48$
For pt $=0.336 \% \quad \rightarrow 0.40$
$\zeta_{\mathrm{c}}=0.40 \mathrm{~N} / \mathrm{mm}^{2}$
Modification factor,
For $\mathrm{D}=150 \mathrm{~mm}, \quad \rightarrow 1.3$
For $\mathrm{D}=300 \mathrm{~mm}, \quad \rightarrow 1$
For $D=283 \mathrm{~mm}, \quad \rightarrow 1.03$
$\zeta_{c \text { modified }}=1.03 \times 0.40=0.412 \mathrm{~N} / \mathrm{mm}^{2}$
$\zeta_{v}<\zeta_{c}$
Safe in shear.

TREAD RISER STAIRCASE

Actual analysis \rightarrow Theory of plates
I/d limited to 25
Support conditions:
i) Transverse direction - Stair is spanning along transverse direction
ii) Longitudinal direction
iii) Stair slab spanning longitudinally and landing slab supported transversely

In Tread - Riser stair span by depth ratio is taken as 25 and the loading on the folded slab comprising the tread and riser is idealized as a simply supported slab with loading on landing slab and going similar to a waist like slab. The loading on folded slab includes,
i) self weight of tread riser slab
ii) floor finish
iii) live load $\rightarrow 5 \mathrm{kN} / \mathrm{m}^{2}$ (overcrowded), $3 \mathrm{kN} / \mathrm{m}^{2}$ (No overcrowding)

Note:
For staircase spanning longitudinally where the landing is supported along the transverse direction only. While finding the effective length along the longitudinal direction only half the length of the landing slab is considered. There is no change in the loading of going slab. But the loading on landing slab is half (waist type and tread-riser type). The landing slab is designed separately for the full load on landing plus half the loading from going slab.

1) Design a dog legged staircase having a tread-riser slab for an office building for the following data:
i) Height between floor $=3.2 \mathrm{~m}$
ii) Riser $=160 \mathrm{~mm}$
iii) Tread $=270 \mathrm{~mm}$
iv) Width of flight is equal to the landing width $=1.25 \mathrm{~m}$ $\mathrm{LL}=5 \mathrm{kN} / \mathrm{m}^{2}, \mathrm{FF}=0.6 \mathrm{~N} / \mathrm{mm}^{2}$

Assume the stairs to be supported on 230 mm thick masonry walls supported only on two edges perpendicular to the risers. Use M20 concrete and Fe415 steel.

The length of the landing slab is halved while finding the effective length along the longitudinal direction since the staircase is supported only on the landing slab along the transverse direction.

Effective length $=2.43+1.25=3.68 \mathrm{~m}$
Assume $1 / \mathrm{d}=25, \quad 3.68 / \mathrm{d}=25$
$\rightarrow \mathrm{d}=147.2 \mathrm{~mm} \sim 150 \mathrm{~mm}$
$D=150+(20+10 / 2)=175 \mathrm{~mm}$
Loading on the going and landing slab: [Folder Tread Riser]
Self weight of tread riser $=25 \times(0.27+0.16) \times 0.175 / 0.27 \times 1=6.97 \mathrm{kN} / \mathrm{m} 2$
Floor finish
Live load
$=0.6 \mathrm{kN} / \mathrm{m} 2$
$=5 \mathrm{kN} / \mathrm{m} 2$
Total $\quad=12.57 \mathrm{kN} / \mathrm{m} 2$
Considering 1 m strip, $\mathrm{w}=12.57 \mathrm{kN} / \mathrm{m}$
Loading on landing slab:
Self weight of slab $=25 \times 0.175=4.375 \mathrm{kN} / \mathrm{m}^{2}$
Floor finish $\quad=0.6 \mathrm{kN} / \mathrm{m}^{2}$
Live load $\quad=5 \mathrm{kN} / \mathrm{m}^{2}$ Total $\quad=9.975 \mathrm{kN} / \mathrm{m}^{2}$
Considering 1 m strip, $\mathrm{w}=9.975 \mathrm{kN} / \mathrm{m}$
50% of load on landing slab is considered along the longitudinal direction.
Along the longitudinal direction, the loading is,
$R_{A} \times 3.68-(4.99 \times 3.3675)-(12.57 \times 1.84 \times 2.43)-(4.99 \times 0.3125 \times 0.625)=0$
$\rightarrow R_{A}=18.39 \mathrm{kN}$
$\rightarrow \mathrm{R}_{\mathrm{B}}=18.39 \mathrm{kN}$

Moment at centre, (i.e. 1.84 m),

$$
\begin{aligned}
M_{\max } & =18.39 \times 1.84-(4.99 \times 0.625 \times 1.5275)-(12.57 \times 1.215 \times 0.675) \\
& =19.79 \mathrm{kNm}
\end{aligned}
$$

Factored moment $=29.69 \mathrm{kNm}$
For $b=1000 \mathrm{~mm}, \mathrm{~d}=150 \mathrm{~mm}$,
$K=M_{u} / b . d^{2}$
$\rightarrow \mathrm{A}_{\mathrm{st}}=598.36 \mathrm{~mm}^{2} / \mathrm{m}$
Provide $12 \mathrm{~mm} \varphi$, spacing required $=189 \mathrm{~mm}$
Provide $12 \mathrm{~mm} @ 180 \mathrm{~mm}$ c/c [Main bar as cross links on riser and tread]

Distribution steel:
0.12% of $\mathrm{c} / \mathrm{s}=0.12 / 100 \times 1000 \times 175=210 \mathrm{~mm}^{2}$
Provide 8mm @ 230mm c/c
[Dist. bar along the width of stair]

Check for shear:
$\zeta_{v}=V_{u} / b . d, \quad V_{u}=[18.39-(4.99 \times 0.15)] \times 1.5=26.46 \mathrm{kN}$
$\zeta_{v}=0.1764 \mathrm{~N} / \mathrm{mm}^{2}$
ζ_{c} :
$100 \mathrm{~A}_{\mathrm{st}} / \mathrm{b} . \mathrm{d} .=0.3989 \%$
For pt $=0.25 \rightarrow \quad 0.36$
For pt $=0.5 \quad \rightarrow \quad 0.48$
For pt $=0.39 \rightarrow \quad(0.1584+0.2688)=0.427$
Modification factor (K):
For $\mathrm{D}=150 \mathrm{~mm} \quad \rightarrow \quad 1.3$
For $\mathrm{D}=300 \mathrm{~mm} \quad \rightarrow \quad 1$
For $\mathrm{D}=175 \mathrm{~mm} \quad \rightarrow \quad 1.08+0.17=1.25$
$\zeta_{\mathrm{c} \text { modified }}=0.534 \mathrm{~N} / \mathrm{mm}^{2}$
$\zeta_{v}<\zeta_{c}$. Hence safe in shear.
Design of landing slab:
The landing slab is designed as a simply supported slab which includes the load directly acting on the landing and 50% of the load acting on the going slab.

The loading on the landing is,
i) Directly on landing $\quad=9.98 \mathrm{kN} / \mathrm{m}$
ii) 50% of load on going slab $=(12.57 \times 2.43) / 2=15.27 \mathrm{kN} / \mathrm{m}$
$\mathrm{w}=25.25 \mathrm{kN} / \mathrm{m}$
$\mathrm{I}=2.6 \mathrm{~m}$
$\mathrm{M}_{\mathrm{u}}=\mathrm{wl}^{2} / 8 \times 1.5=32 \mathrm{kNm}$
$\mathrm{b}=1000 \mathrm{~mm}, \mathrm{~d}=150 \mathrm{~mm}$
$K=M_{u} / b . d^{2}$
$\mathrm{A}_{\mathrm{st}}=650.19 \mathrm{~mm}^{2}$

(a)

(b)

Providing $12 \mathrm{~mm} \varphi$ bar, spacing required $=173.9 \mathrm{~mm}$
Provide 12mm @ 170mm c/c
Distribution steel:
0.12\% of c/s

Provide 8mm @ 230mm c/c
3 numbers of 8 mm bars are provided between the cross links as distribution bars. A nominal reinforcement of $10 \mathrm{~mm} @ 200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ is provided at the top of landing slab.
Note : Shear in tread riser slab is negligible. Check for shear is not required.

DESIGN OF REINFORCED CONCRETE WALL

- Compression member
- In case where beam is not provided and load from the slab is heavy
- When the masonry wall thickness is restricted
- Classified as
- plain concrete wall, when rein. $<0.4 \%$
- Reinforced concrete wall, when rein. $>0.4 \%$

Load from slab is transferred as axial load to wall. When depth is large, it is called RC wall. Design is similar to a RC column, breadth equal to thickness of wall and depth equal to 1 m .

- Axially loaded wall
- Axially loaded with uniaxial bending

General conditions:
Classification of concrete walls:

1. Plain concrete wall
2. Reinforced concrete wall

In plain concrete wall, the reinforcement provided is less than $0.4 \% \mathrm{of} \mathrm{c} / \mathrm{s}$. In reinforced concrete wall, the percentage of steel provided is greater than 0.4% and is designed similar to reinforced concrete columns. Slenderness ratio is equal to Least of (l/t or h/t), where,
$I \rightarrow$ effective length of wall, $\quad h \rightarrow$ effective height of wall, $t \rightarrow$ thickness of wall If $\lambda<12$, the wall is short and if $\lambda>12$, the wall is slender.

Braced and Unbraced:
Braced: When cross walls are provided for the walls such that they can take lateral load and 2.5% of vertical load, then the wall is braced. Otherwise, the wall is known as unbraced wall.

Note: Other walls under special cases are,
i) Cantilever wall
ii) Shear walls - To take lateral loads [Take care of flexure developed due to lateral loading on the structure, depth is provided along the transverse direction]

Guidelines for RC wall:

1. The limiting slenderness $\left(\lambda_{\text {lim }}\right)$ if any for unbraced wall is 30 and for braced wall is 45.
2. For short braced $R C$ wall $(\lambda<12), P_{u}=0.4 . f_{c k} \cdot A_{c}+0.67 . f_{y} \cdot A_{s t}$
3. For short unbraced RC wall, along with the above axial load Pu, the moment due to minimum eccentricity is checked for $\mathrm{e}_{\min }=\mathrm{t} / 20$ or 20 mm , where, $\mathrm{M}=\mathrm{P} \times \mathrm{e}$.
For the above axial load and moment, the RC wall is designed similar to RC column subjected to axial load and uniaxial moment.
4. Slender braced wall ($\lambda<45$):

The additional moment due to additional eccentricity as per Table 1 of SP16 is considered. Where the additional eccentricity,

$$
\mathrm{e}_{\mathrm{a}}=\frac{L_{e}^{2}}{2000 . t}, \quad \mathrm{M}_{\mathrm{a}}=\mathrm{P} \times \mathrm{e}_{\mathrm{a}}
$$

The additional moment due to eccentricity is added with the moment on the column and moment on the wall. The wall is designed for axial load with uniaxial moment.
5. For slender unbraced wall [λ limited to 30]: Similar procedure as in case 4 is adopted.
6. Detailing of reinforcement [IS456 Guidelines]:
a. For plain concrete wall, minimum vertical steel is 0.12% for HYSD bars and 0.15% for mild steel bar
b. For RC wall, minimum vertical reinforcement is 0.4% of c / s
c. In plain concrete wall, transverse steel is not required
d. In RC wall, transverse steel is not required (not less than 0.4\%)
e. Maximum spacing of bars is 450 mm or 3 t , whichever lesser
f. The thickness of wall in no case should be less than 100 mm
g. If thickness is greater than 200 mm , double grid reinforcement is provided along both the faces.
7. BS 8110 guidelines:
a. Horizontal reinforcement same as IS456
b. Vertical reinforcement not to be greater than 4%
c. When compression steel is greater than 2% of vertical reinforcement, horizontal reinforcement of 0.25% for HYSD bars or 0.3% of MS bars are provided. [As per IS456, it is 0.2% for HYSD bars and 0.3% for mild steel bars].
d. The diameter of transverse bars (horizontal) should not be less than 6 mm or $\varphi\llcorner/ 4$.
8. Links are provided when the compression steel is greater than 2%. Horizontal links are provided for thickness less than 220 mm . Diagonal links are provided when thickness is greater than 220 mm . The spacing of links should be less than 2 t and diameter of links not less than 6 mm or $\varphi_{\llcorner } / 4$.

The support conditions:

1. Both ends fixed (Restrained against rotation and displacement) $\rightarrow I_{\text {eff }}=0.65 I_{o}-0.75 I_{o}$
2. Both ends hinged

$$
\rightarrow \mathrm{I}_{\mathrm{eff}}=\mathrm{I}_{0}
$$

3. One end fixed and other end free
$\rightarrow l_{\text {eff }}=2 l_{0}$
4. One end fixed and other end hinged
$\rightarrow I_{\text {eff }}=I_{0} / \sqrt{2}$
1) Design a reinforced concrete wall 3 m height, 4 m length between cross walls. The wall is 100mm thick and carries a factored load of $600 \mathrm{kN} / \mathrm{m}$ length. Use M20 concrete and Fe415 steel.

Since cross walls are provided, the wall is braced.
$\lambda \quad=\mathrm{h} / \mathrm{t}$ or l/t

$$
=3000 / 120 \text { or } 4000 / 120
$$

$$
=30 \text { or } 40
$$

Assume both ends fixed (restrained against rotation and displacement)
$\mathrm{L}_{\text {eff }} \quad=0.75 \mathrm{I}_{0} \quad$ where, I_{0} is least of length and height
$=0.75 \times 3=2.25 \mathrm{~m}$
$\lambda=2250 / 100=22.5>12$
$\lambda_{\text {lim }}=45>22.5 \quad\left[\lambda<\lambda_{\text {lim }}\right]$
Accidental minimum eccentricity due to,

$$
\begin{aligned}
\mathrm{e}_{\min } & =\mathrm{t} / 20 \text { or } 20 \mathrm{~mm} \\
& =5 \text { or } 20 \mathrm{~mm}
\end{aligned}
$$

Therefore, moment due to accidental eccentricity of 20 mm is considered.
Additional eccentricity due to slenderness,
$\mathrm{e}_{\mathrm{a}}=\frac{L_{e}{ }^{2}}{2000 t}=\frac{2.25^{2} \times 1000^{2}}{2000 \times 100}=25.3125 \mathrm{~mm}$
Total eccentricity $=e_{\text {min }}+e_{a}=20+25.3=45.3 \mathrm{~mm}$
Moment $M_{u}=P_{u} \times 45.3=27.2 \times 10^{6} \mathrm{Nmm}$

For the axial load and moment, RC wall is designed similar to a RC column subjected to axial load and uniaxial moment.
$\frac{P_{u}}{f_{c k} b t}=\frac{600 \times 10^{3}}{20 \times 100 \times 1000}=0.3$
$\frac{M_{u}}{f_{c k} b t^{2}}=0.136$
From SP16 chart, for Reinforcement along two sides, Fe415 steel, d'/D $=0.1$, Referring Chart 32,
$\frac{p}{f_{c k}}=0.07 \quad \rightarrow \quad \mathrm{p}=0.07 \times 20=1.4 \%$
Area of steel $=1.4 / 100 \times 100 \times 1000=1400 \mathrm{~mm}^{2}$
Provide 16mm @ 140mm c/c as vertical compression bar
Horizontal - Provide a nominal transverse reinforcement of 0.4% of c / s
Ast $=0.4 / 100 \times 1000 \times 100=400 \mathrm{~mm}^{2}$
Provide 8mm @ 120mm c/c
Since vertical reinforcement is less than 2\%, no horizontal links are required.
2) A reinforced concrete wall of height 5 m is restrained in position and direction carrying a factored load of 600 kN and factored moment of 25 kNm at right angles to the plane of the wall. Use M20 concrete and Fe415 steel. Design the wall.
Eccentricity for the given moment is, $\mathrm{e}=\frac{M_{u}}{P_{u}}=\frac{25 \times 10^{6}}{600 \times 10^{3}}=41.67 \mathrm{~mm}$
The eccentricity is compared with $\mathrm{e}_{\text {min }}$. The larger of the two is added with additional eccentricity due to slenderness, if any.
Assume I/d of 22 [Generally assume I/d from 20-25]
$d=5000 / 22=227.27$
Assume a thickness of 225 mm
$L_{\text {eff }}=0.75 \times 5=3.75 \mathrm{~m}$
$\lambda_{\text {act }}=3750 / 225=16.67>12$
The given wall is slender.

$$
\begin{aligned}
\mathrm{e}_{\text {min }} & =\mathrm{t} / 20 \text { or } 20 \mathrm{~mm} \\
& =225 / 20 \text { or } 20 \mathrm{~mm} \\
& =11.25 \mathrm{~mm} \text { or } 20 \mathrm{~mm}<41.67 \mathrm{~mm}
\end{aligned}
$$

Additional eccentricity due to slenderness,
$\mathrm{e}_{\mathrm{a}}=\frac{L_{e}{ }^{2}}{2000 t}=\frac{3750^{2}}{2000 \times 225}=31.25 \mathrm{~mm}$
Total eccentricity $=e_{\text {min }}+e_{a}=41.67+31.25=72.92 \mathrm{~mm}$
Moment $M_{u}=P_{u} \times 72.92=600 \times 1000 \times 72.92=43.75 \times 10^{6} \mathrm{Nmm}$
For the axial load and moment, RC wall is designed similar to a RC column subjected to axial load and uniaxial moment.
$\frac{P_{u}}{f_{c k} b t}=\frac{600 \times 10^{3}}{20 \times 100 \times 225}=0.13$
$\frac{M_{u}}{f_{c k} b t^{2}}=0.0432$
From SP16 chart, for Reinforcement along two sides, Fe415 steel, d'/D = 0.1, Referring Chart 32,
$\frac{p}{f_{c k}}=0 \quad$ No reinforcement is required.
But minimum reinforcement of vertical compression steel of 0.4% is provided.
Area of steel $=0.4 / 100 \times 225 \times 1000=900 \mathrm{~mm}^{2}$
Provide 12mm @ 120mm c/c as vertical compression bar
Since thickness of wall is 225 mm , reinforcement is provided on both faces of the wall.
Therefore, provide 12 mm @ $250 \mathrm{~mm} \mathrm{c} / \mathrm{c}<3 \mathrm{t}$ and 450 mm
Horizontal - Provide a nominal transverse reinforcement of 0.4% of c / s on both faces.
Ast $=0.4 / 100 \times 1000 \times 100=400 \mathrm{~mm}^{2}$
Provide 8mm @ 120mm c/c
Since vertical reinforcement is less than 2%, no horizontal links are required.
3) In the above problem, design the wall for factored axial load of 1000 kN and factored moment of 50 kNm .
$P_{u}=1000 \mathrm{kN}, \quad \mathrm{M}_{\mathrm{u}}=50 \mathrm{kNm}$
$e=50 \times 10^{6} / 1000 \times 10^{3}=50 \mathrm{~mm}$
$\mathrm{l} / \mathrm{d}=22$ [Generally I / d taken from 20 - 25]
$\mathrm{d} \quad=5000 / 22=227.27 \mathrm{~mm}$
Adopt a thickness of 225 mm .
$l_{\text {eff }}=0.75 \times 5000=3750 \mathrm{~mm}$
$\lambda_{\text {act }}=3750 / 225=16.67>12$
$\lambda_{\text {min }}=45>16.67$
Wall is slender.

$$
\begin{aligned}
e_{\min } & =\mathrm{t} / 20 \text { or } 20 \mathrm{~mm} \\
& =225 / 20 \text { or } 20 \mathrm{~mm} \\
& =11.25 \mathrm{~mm} \text { or } 20 \mathrm{~mm}<41.67 \mathrm{~mm}
\end{aligned}
$$

Additional eccentricity due to slenderness,
$\mathrm{e}_{\mathrm{a}}=\frac{L_{e}{ }^{2}}{2000 t}=\frac{3750^{2}}{2000 \times 225}=31.25 \mathrm{~mm}$
Total eccentricity $=\mathrm{e}_{\text {min }}+\mathrm{e}_{\mathrm{a}}=50+31.25=81.25 \mathrm{~mm}$
Moment $M_{u}=P_{u} \times 81.25=1000 \times 1000 \times 81.25=81.25 \times 10^{6} \mathrm{Nmm}$
For the axial load and moment, RC wall is designed similar to a RC column subjected to axial load and uniaxial moment.
$\frac{P_{u}}{f_{c k} b t}=\frac{1000 \times 10^{3}}{20 \times 100 \times 225}=0.22$
$\frac{M_{u}}{f_{c k} b t^{2}}=0.0802$
From SP16 chart, for Reinforcement along two sides, Fe415 steel, d'/D $=0.1$, Referring Chart 32,
$\frac{p}{f_{c k}}=0.03 \quad \rightarrow \quad \mathrm{p}=0.03 \times 20=0.6 \%$
Area of steel $=0.6 / 100 \times 225 \times 1000=1350 \mathrm{~mm}^{2}$
Provide 16mm @ 140mm c/c as vertical compression bar
Horizontal - Provide a nominal transverse reinforcement of 0.4% of c / s
Area of steel $=0.4 / 100 \times 225 \times 1000=900 \mathrm{~mm}^{2}$
Since thickness of wall is 225 mm , reinforcement is provided on both faces of the wall.
Therefore, provide 12 mm @ $250 \mathrm{~mm} \mathrm{c} / \mathrm{c}<3 \mathrm{t}$ and 450 mm
Since vertical reinforcement is less than 2%, no horizontal links are required.

DESIGN OF FLAT SLAB

a) Interior panel
b) Exterior panel

Various components of flat slab:
i) Without drop and head
ii) With drop and without head
iii) With drop and head

Column strip : It is the design strip having a width of $I_{2} / 4$, where I_{2} is the span transverse to $l_{1} . \quad l_{2}$ - longer span, moment is considered along the span l1
Middle strip : It is the design strip bounded by a column strip on its opposite sides

Proportioning of flat slabs:
As per cl. 31 of IS456-2000, the span by depth ratio of two way slab is applicable for flat slabs and the values can be ($1 / \mathrm{d}$) modified by 0.9 for flat slabs with drops.
Take $\rightarrow 1 /$ d as 32 for HYSD bars
As per ACI - The drop thickness should not be less than 100 mm or (Thickness of slab)/4.
While calculating span by depth ratio, longer span is used.
The thickness of slab should not be less than 125 mm .
The purpose of column drop is to reduce the shear stress and also reduce the reinforcement in the column strip.
The increase in column diameter at the head flaring of column head takes care of punching shear developed at a distance of $\mathrm{d} / 2$ all around the junction between the slab and column head.

Two methods of design are available for flat slabs:

1. Direct design method
2. Equivalent frame method

Direct design method: (Cl.31.4.1, IS456-2000)
Requirements for direct design methods are,

1. There must be atleast three continuous spans in each direction
2. The panels should be rectangular with $\mathrm{I} / / \mathrm{Ix}=\mathrm{I}_{2} / \mathrm{I}_{1}$ ratio <2
3. The columns must not offset by more than 10% of the span from either of the successive columns
4. Successive span length in each direction must not differ by more than one third of longer span.
5. Design live load must not exceed 3 times the designed dead load

Design procedure:

As per Cl.31.4.2.2, IS456-2000, the total moment for a span bounded by columns laterally is $M_{0}=W I_{0} / 2$, where M_{0} is the sum of positive and negative moment in each direction. W is the total design load covered on an area $L_{2} L_{1}$

$$
W=w \times L_{2} \times L_{n}
$$

This moment is distributed for the column strip and middle strip

Moment distribution for Interior Panel:

	Column strip	Middle strip
Negative moment (65\%)	$65 \times 0.75=49 \%$	$65 \times 0.2=15 \%$
Positive moment (35\%)	$35 \times 0.6=21 \%$	$35 \times 0.4=15 \%$

$\mathrm{M}_{\mathrm{o}}=\frac{W L_{o}}{8}$
Also L_{o} should not be less than 0.65 times of $L_{1}\left[L_{n}>0.65 L_{1}\right)$

1) Design a flat slab system (interior panel) to suit the following data:

Size of the floor $=20 \times 30 \mathrm{~m}$
Column interval $=5 \mathrm{mc} / \mathrm{c}$
Live load on slab $=5 \mathrm{kN} / \mathrm{m}^{2}$
Materials used are Fe415 HYSD bars and M20 concrete

Proportioning of flat slab:
Assume l / d as $32, \rightarrow \mathrm{~d}=5000 / 32 \rightarrow \mathrm{~d}=156.25 \mathrm{~mm}$
$\mathrm{d}=175 \mathrm{~mm}$ (assume), $\quad \mathrm{D}=175+20+10 / 2=200 \mathrm{~mm}$
As per ACl code, the thickness of drop $>100 \mathrm{~mm}$ and $>$ (Thickness of slab) $/ 4$
Therefore, 100 mm or $200 / 4=50 \mathrm{~mm}$
Provide a column drop of 100 mm
Overall depth of slab at drop $=200+100=300 \mathrm{~mm}$
Length of the drop $>L / 3=5 / 3=1.67 \mathrm{~m}$
Provide length of drop as 2.5 m . For the panel, 1.25 m is the contribution of drop.
Column head $=\mathrm{L} / 4=5 / 4=1.25 \mathrm{~m}$
$\mathrm{L}_{1}=\mathrm{L}_{2}=5 \mathrm{~m}$
$L_{n}=L_{2}-D=5-1.25=3.75 m$
As per code, $\mathrm{M}_{\circ}=\frac{W L_{o}}{8}$

Loading on slab: (Average thickness $=(300+200) / 2=250 \mathrm{~mm})$
Self weight of slab $=25 \times 0.25=6.25 \mathrm{kN} / \mathrm{m}^{2}$
Live load
Floor finish
$=5 \mathrm{kN} / \mathrm{m}^{2}$

Total $\quad=12 \mathrm{kN} / \mathrm{m}^{2}$
Factored load $=1.5 \times 12=18 \mathrm{kN} / \mathrm{m}^{2}$
$W=W_{u} \times L_{2} \times L_{n}=18 \times 5 \times 3.75=337.5 \mathrm{kN}$
Total moment on slab panel $=(337.5 \times 3.75) / 8=158.203 \mathrm{kNm}$
Distribution of moment:

	Column strip	Middle strip
Negative moment (65\%)	$65 \times 0.75=49 \%$	$65 \times 0.2=15 \%$
	$0.49 \times 158.2=77.52 \mathrm{kNm}$	$0.15 \times 158.2=23.73 \mathrm{kNm}$
Positive moment (35\%)	$35 \times 0.6=21 \%$	$35 \times 0.4=15 \%$
	$0.21 \times 158.2=33.22 \mathrm{kNm}$	$0.15 \times 158.2=23.73 \mathrm{kNm}$

Check for depth adopted:
Column strip:

$$
\begin{aligned}
& M_{u}=0.138 . f_{c k} \cdot b . d^{2} \quad b=2.5 m \\
& 77.5 \times 10^{6}=0.138 \times 20 \times 2.5 \times 1000 \times d^{2}
\end{aligned}
$$

$\rightarrow \quad d=105.98 \mathrm{~mm} \sim 106 \mathrm{~mm}<275 \mathrm{~mm}$
Middle strip:

$$
\begin{aligned}
& M_{u}=0.138 . f_{c k} \cdot b . d^{2} \quad b=2.5 m \\
& 23.73 \times 10^{6}=0.138 \times 20 \times 2.5 \times 1000 \times d^{2}
\end{aligned}
$$

$\rightarrow \quad d=58.68 \mathrm{~mm} \sim 59 \mathrm{~mm}<175 \mathrm{~mm}$

Check for punching shear:
The slab is checked for punching shear at a distance of $\mathrm{d} / 2$ all around the face of the column head. The load on the slab panel excluding the circular area of diameter $(D+d)$ is the punching shear force.

Critical section for shear in a flat slab

Shear force $=$ Total Load $-($ Load on circular area $)$

$$
\begin{aligned}
& =18 \times 5 \times 5-\left(\pi(D+d)^{2} / 4\right) \times w_{n} \\
& =417.12 \mathrm{kN}
\end{aligned}
$$

Shear force along the perimeter of the circular area $=\frac{\text { ShearForce }}{\pi(D+d)}=87.06 \mathrm{kN}$
Nominal shear stress: $(b=1 \mathrm{~m})$
$\varsigma_{v}=\frac{V_{u}}{b . D}=\frac{87.06 \times 10^{3}}{1000 \times 275}=0.317 \mathrm{~N} / \mathrm{mm}^{2}$
Design shear stress: $\varsigma_{c}=K . \varsigma_{c}{ }^{\text {' }}$
Where, $K=(0.5+\beta) \leq 1$

$$
=1.5 \leq 1
$$

$S_{c}{ }^{\prime}=0.25 \cdot \sqrt{f_{c k}}=1.118 \mathrm{~N} / \mathrm{mm}^{2}$
$\varsigma_{c}=1 \times 1.118=1.118 \mathrm{~N} / \mathrm{mm}^{2}$
$s_{v}<S_{c}$
Safe in shear.

Reinforcement:
Column strip: $(b=2.5 m), \quad(d=275 m m)$
Negative moment $=77.5 \times 10^{6} \mathrm{Nmm}$

$$
M_{u}=0.87 \cdot f_{y} \cdot A_{s t} \cdot\left(d-0.42\left(\frac{0.87 \cdot f_{y} A_{s t}}{0.36 \cdot f_{c k} \cdot b}\right)\right) \quad[\mathrm{OR}] \quad \mathrm{K}=\frac{M_{u}}{b d^{2}} \rightarrow \text { Take } \mathrm{p}_{\mathrm{t}} \text { from SP16 }
$$

$77.6 \times 10^{6}=99.29 \times 10^{3} . \mathrm{A}_{\mathrm{st}}-3.04 . \mathrm{A}_{\mathrm{st}}{ }^{2}$
$\rightarrow \mathrm{A}_{\mathrm{st}}=800.16 \mathrm{~mm}^{2}$
Required 10 mm @ $240 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
$\operatorname{Min} \mathrm{A}_{\mathrm{st}}: 0.12 \%$ of $\mathrm{c} / \mathrm{s}=0.12 / 100 \times 1000 \times 275=825 \mathrm{~mm}^{2}$
Provide 10 mm @ $230 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Positive moment $=33.2 \mathrm{kNm}$
$\mathrm{A}_{\mathrm{st}}=337.876 \mathrm{~mm}^{2}$
Provide 8mm @ 370mm c/c
Min. steel: Provide 10mm @ 230mm c/c
Middle strip: $(b=2.5 \mathrm{~m}), \quad(d=175 \mathrm{~mm})$
Negative and positive moment: 23.7 kNm
$\mathrm{A}_{\mathrm{st}}=382.6 \mathrm{~mm}^{2}$
$A_{\text {st min. }}=(0.12 / 100 \times 1000 \times 2500 \times 175)=525 \mathrm{~mm}^{2}$

Provide 8mm @ 230mm c/c.

FLAT SLAB [EXTERIOR PANEL]
(Cl31.4.3.3, IS456-2000)
Stiffness of slab and column $=\frac{4 E I}{L}$,
where, $\mathrm{I}=\mathrm{bd}^{3} / 12$ (or) $\pi \mathrm{d}^{4} / 64$,
$\mathrm{E}=5000 \sqrt{f_{c k}}$ α_{c} is checked with $\alpha_{\mathrm{c} \text { min }}$ given in Table 17 of IS456. From CI.31.4.3.3, the interior and exterior negative moments and the positive moments are found.

Interior negative design moment is,

$$
0.75-\frac{0.10}{1+\frac{1}{\alpha_{c}}} \quad \text { where, } \alpha_{\mathrm{c}}=\frac{\sum K_{c}}{K_{s}}
$$

Interior positive design moment is,
$0.63-\frac{0.28}{1+\frac{1}{\alpha_{c}}}$
Exterior negative design moment is,
$\frac{0.65}{1+\frac{1}{\alpha_{c}}}$
The distribution of interior negative moment for column strip and middle strip is in the ratio 3:1 (0.75:0.25)

The exterior negative moment is fully taken by the column strip. The distribution of positive moment in column strip and middle strip is in the ratio $1.5: 1(0.6: 0.4)$.

Design an exterior panel of a flat slab floor system of size $24 \mathrm{~m} \times 24 \mathrm{~m}$, divided into panels $6 \mathrm{~m} \times 6 \mathrm{~m}$ size. The live load on the slab is $5 \mathrm{kN} / \mathrm{m}^{2}$ and the columns at top and bottom are at diameter 400 mm . Height of each storey is 3 m . Use M20 concrete and Fe415 steel.
$1 / d=32 \rightarrow d=6000 / 32=187.5 \mathrm{~mm}$
Length of drop $\geq 3 \mathrm{~m}$
Length of drop $=$ Column strip $=3 \mathrm{~m}$
Assume effective depth, $d=175 \mathrm{~mm}, \mathrm{D}=200 \mathrm{~mm}$
As per ACI, Assume a drop of 100 mm
Depth of slab at the drop is 300 mm
Diameter of column head $=1 / 4=6 / 4=1.5 \mathrm{~m}$

Loading on slab:
Self weight of slab $=(0.2+0.3) / 2 \times 25=0.25 \times 25=6.25 \mathrm{kN} / \mathrm{m}^{2}$
Live load $\quad=5 \mathrm{kN} / \mathrm{m}^{2}$
Floor finish
$=0.75 \mathrm{kN} / \mathrm{m}^{2}$
Total $\quad=12 \mathrm{kN} / \mathrm{m}^{2}$
Factored load $\quad=1.5 \times 12=18 \mathrm{kN} / \mathrm{m}^{2}$

To find the value of $\alpha_{\mathrm{c}}=\frac{\sum K_{c}}{K_{s}}$
as per Cl.3.4.6.,
$\alpha_{\mathrm{c}}=$ flexural stiffness of column and slab
$\Sigma \mathrm{K}_{\mathrm{c}}=$ summation of flexural stiffness of columns above and below
$\Sigma \mathrm{K}_{\mathrm{s}}=$ summation of flexural stiffness of slab
$\Sigma \mathrm{K}_{\mathrm{c}}=2\left(\frac{4 E I}{L}\right)=2\left(\frac{4 x E x I_{c}}{L_{c}}\right)=\frac{2 \times 4 \times 22.3606 \times 10^{3} \times 1.25 \times 10^{9}}{3000}$
Where, $I=\pi d^{4} / 64=\pi \times 400^{4} / 64$,

$$
\mathrm{E}=5000 \sqrt{f_{c k}}=22.3606 \times 10^{3}
$$

$\Sigma \mathrm{K}_{\mathrm{s}}=\frac{4 x E x 6000 x(250)^{3}}{12 x 6000}=5.208 \times 10^{6} \mathrm{E}$
$\alpha_{c}=0.644$
From Table 17 of IS456-2000
$\alpha_{c \text { min }}=L_{2} / L_{1}=6 / 6=1$
$L_{L} / D_{L}=\frac{5}{(6.25+0.75)}=0.71 \sim 1$
$\alpha_{\mathrm{c} \text { min }}=0.7$
$\alpha_{\mathrm{c} \text { min }}$ should be $<\alpha_{\mathrm{c} \text { min }}$
$\alpha_{c}=0.7$
Total moment on slab $=\frac{W \cdot L_{n}}{8}=273.375 \mathrm{kNm}$
$W=W_{u} \times L_{2} \times L_{n}=18 \times 6 \times 4.5=486 \mathrm{kN}$
$L_{n}=6-1.5=4.5 \mathrm{~m}$
As per Cl.31.4.3.3 of IS456-2000,
Exterior negative design moment is,
$\frac{0.65}{1+\frac{1}{\alpha_{c}}} \times \mathrm{M}_{0}=\underline{73.168} \mathrm{kNm} \quad$ where, $\alpha_{\mathrm{c}}=0.7$

Interior negative design moment is,
$0.75-\frac{0.10}{1+\frac{1}{\alpha_{c}}} \times \mathrm{M}_{0} \quad$ where, $\alpha_{\mathrm{c}}=\frac{\sum K_{c}}{K_{s}}$
$=193.775 \mathrm{kNm}$
For column strip (75\%),
$=0.75 \times 193.775=145.3309 \mathrm{kNm}$
For middle strip (25\%),
$=0.25 \times 193.775=\underline{48.44} \mathrm{kNm}$

Interior positive design moment is,
$0.63-\frac{0.28}{1+\frac{1}{\alpha_{c}}} \times \mathrm{M}_{0}$
$=140.708 \mathrm{kNm}$
For column strip (60\%),
$=0.6 \times 140.708=\underline{84.43} \mathrm{kNm}$
For middle strip (40\%),
$=0.4 \times 140.708=\underline{56.28} \mathrm{kNm}$
Check for depth:
$M_{\text {ulim }}=0.138$ fck.b. d^{2}
$\rightarrow 145.331 \times 106=0.138 \times 20 \times 3 \times d^{2}$
$\rightarrow \mathrm{d}_{\mathrm{cs}}=132.484 \mathrm{~mm}<275 \mathrm{~mm}$
$\mathrm{M}_{\mathrm{ms}}=82.4 \mathrm{kNm}$
$\rightarrow \mathrm{d}_{\mathrm{ms}}=82.4 \mathrm{~mm}<175 \mathrm{~mm}$

Check for punching shear:
SF = TL - (Load on circular area)

$$
\left.\begin{array}{ll}
=18 \times 6 \times 6-\left[\pi(1.775)^{2} / 4\right] \times 18 &
\end{array} w_{n}=18\right] .
$$

Shear force $/ \mathrm{m}$ along the perimeter of the circular area $=\frac{S F}{\pi(D+d)}=108.216 \mathrm{kN} / \mathrm{m}$
Nominal shear stress $=\varsigma_{\mathrm{v}}=\frac{V_{u}}{b . d}=\frac{108.216 \times 10^{3}}{1000 \times 275}=0.394 \mathrm{~N} / \mathrm{mm} 2$
Design shear stress: $\varsigma_{\mathrm{c}}=\mathrm{K} . \varsigma_{\mathrm{c}}{ }^{\prime}$.
where, $K=(0.5+\beta) \leq 1$
$=(0.5+6 / 6) \leq 1$
$=1.5 \leq 1 \quad \rightarrow K=1$
$\varsigma_{c}{ }^{\prime}=0.25 \sqrt{f_{c k}}=1.118 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Sv}_{\mathrm{v}}<\mathrm{Sc}_{\mathrm{c}}$
Section is safe in shear.
$A_{s t}$ for exterior negative moment (73.168 kNm), $b=3000 \mathrm{~mm}, \mathrm{~d}=275 \mathrm{~mm}$,
$M_{u}=0.87 \cdot f_{y} \cdot A_{s t} \cdot\left(d-0.42\left(\frac{0.87 \cdot f_{y} A_{s t}}{0.36 \cdot f_{c k} \cdot b}\right)\right) \quad[\mathrm{OR}] \quad \mathrm{K}=\frac{M_{u}}{b d^{2}} \rightarrow$ Take p_{t} from SP16
$73.168 \times 10^{6}=99.28 \times 10^{3} . \mathrm{A}_{\mathrm{st}}-2.53 . \mathrm{A}_{\mathrm{st}}{ }^{2}$
$\rightarrow \mathrm{A}_{\mathrm{st}}=751.373 \mathrm{~mm}^{2}$
Required 10mm @ 310mm c/c
$\operatorname{Min} \mathrm{A}_{\mathrm{st}}: 0.12 \%$ of $\mathrm{c} / \mathrm{s}=0.12 / 100 \times 3000 \times 275=990 \mathrm{~mm}^{2}$
Provide 10mm @ 230mm c/c
Similarly the reinforcement required in CS and MS for -ve and +ve moments are found and listed below:

Location	$\mathrm{A}_{\text {st }}$ Req.	Min. $\mathrm{A}_{\text {st }}$	$\mathrm{A}_{\text {st }}$ Provided	Rein. Provided
Ext. -ve Mom. CS	751	990	990	$10 @ 230 \mathrm{c} / \mathrm{c}$
Int. -ve Mom. CS	1522	990	1522	$10 @ 150 \mathrm{c} / \mathrm{c}$
Int. -ve Mom. MS	791	630	791	$10 @ 290 \mathrm{c} / \mathrm{c}$
+ve Mom. CS	869	990	990	$10 @ 230 \mathrm{c} / \mathrm{c}$
+ve Mom. MS	925	630	925	$10 @ 250 \mathrm{c} / \mathrm{c}$

Abstract

Brick (Comp. strength $\rightarrow 3.5$ to $40 \mathrm{~N} / \mathrm{mm}^{2}$) Clay Calcium Silicate (Cement, FAL-G)

Used for, 1. External and internal bearing walls 2. Load bearing piers and columns 3. Paritition walls 4. Brick masonry foundations 5. Floorings and Pavings

Advantages of brick masonry: Attractive appearance, economical light weight, durable, strength, fire resistance, sound insulation, low thermal conductivity, minimum maintenance.

Classification of bricks: [Based on shapes]

1. Solid bricks - Perforations or holes not greater than 25% of volume
2. Perforated bricks - Perforation is greater than 25% of volume. Advantages:of perforated bricks are high thermal insulation and light weight. Water absorption should not be greater than 15% after 24 hours of insertion and compressive strength not less than $7 \mathrm{~N} / \mathrm{mm}^{2}$.
3. Hollow blocks - Holes greater than 20% and sizes of holes greater than 20 mm .
4. Cellular bricks - Holes greater than 20% and closed at one end
5. Ornamental bricks - Bricks used in corbels, cornices, etc.

Size of bricks: [As per IS1077]
Standard size - $19 \times 9 \times 9 \mathrm{~cm}$
Modular brick $-20 \times 10 \times 10 \mathrm{~cm}$

The average compressive strength of brick unit as per IS3495 (Part I) - 1976 is,

$$
3.5-40 \mathrm{~N} / \mathrm{mm}^{2}
$$

Tests on bricks:

1. Water absorption: Brick units immersed in water for 24 hours has,
i) upto $12.5 \mathrm{~N} / \mathrm{mm}^{2}$ strength and water absorption should not be greater than 20%
ii) for higher classes, water absorption should not be greater than 15\%
2. Efflorescence: Leaching of water soluble salts (white coloured) under efflorescence.

Test for efflorescence is done as per IS3495 (Part III) - 1976. The brick is kept in a dish with water height as 25 mm and the time for water absorption and evaporation is noted. This value is compared with the same dish with 25 mm water height kept for evaporation alone. Based on the code, efflorescence in brick is reported as nil, slight, moderate, heavy and serious.
3. Hardness: For the brick to be hard, it should create no impression by finger nail.
4. Soundness: When two bricks are struck, it should not break and produce a clear ringing sound.
5. Compressive test: $3.5-40 \mathrm{~N} / \mathrm{mm}^{2}$
6. Flexure test: Rarely done

Classification of brick based on structure and usage:

1. Solid wall
2. Cavity wall
3. Faced wall
4. Veneered wall

Based on loading, walls are classified as,

1. Axially loaded walls [Load applied at centre t/2]
2. Eccentrically loaded walls
3. Laterally loaded walls [Loading applied at sides]

Design procedure:
Slenderness (Least of $\left.\mathrm{I}_{\mathrm{e}} / \mathrm{t} \& \mathrm{~h}_{\mathrm{e}} / \mathrm{t}\right):\left(\lambda_{\max }=27\right)$
($\lambda=60$ for RC columns, $\lambda=45 \& 30$ for braced and unbraced RC walls)

1. Actual stress on the brick masonry wall is found based on the load from slab and self weight of wall.
2. The permissible compressive stress for masonry based on the type of mortar and compressive strength of brick unit is taken from Table 8, IS1905-1987. This table is valid for slenderness ratio $\lambda \leq 6$ and eccentricity $e=0$.
3. Corrections are applied for slenderness ratio, eccentricity (if any), shape and size of brick unit. Shape modification factor and cross sectional area of masonry (area reduction factor). 4. Slenderness ratio is found as the least of l_{e} / t or h_{e} / t, where, $\left(l_{e}=\right.$ Effective length and $h_{e}=$ effective height).

Effective length is found from Table 5, IS1905-1987 and effective height is found from Table 4, IS1905-1987.

Table 4 - Effective height:

Support condition
Fixed - Fixed
Fixed - Hinged
Hinged - Hinged
Fixed - Free

Effective height

0.75 H
0.85 H

H
1.5 H

The permissible value of λ is $27\left(\lambda_{\max }\right)$ for cement mortar (OPC \& PPC), given in Table 7, IS1905-1987.
5. Eccentricity of loading is determined (for axial loading e=0). Eccentricities for various other cases are to be checked as per Appendix B of IS1905-1987.
6. For the permissible stress adopted, shape modification factor is found based on height to width ratio of each brick unit given in Table 10, IS1905-1987.
7. Area reduction factor is applied for elements having cross section less than $0.2 \mathrm{~m}^{2}$. The area modification factor, $\mathrm{k}=0.7+1.5 \mathrm{~A}$
8. After applying modification factors, the actual stress is verified with a modified permissible stress, $\sigma_{\text {act }}<\sigma_{\text {per }}$
The permissible stress (strength of the wall) depends upon the following factors:
i) Compressive strength of masonry unit
ii) Compressive strength of mortar used
iii) Slenderness ratio of the wall
iv) Eccentricity in loading
v) Shape and size of brick unit
vi) Cross sectional area of masonry

1. Design an interior cross wall for a two storeyed building to carry 100 mm thick RC slab with 3 m storey height. The wall is unstiffened and supports 2.65 m wide slab. Loading on the slab is given as below:
i) Live load on floor slab $=2 \mathrm{kN} / \mathrm{m}^{2}$
ii) Live load on roof slab $=1.5 \mathrm{kN} / \mathrm{m}^{2}$
iii) Floor finish $=0.2 \mathrm{kN} / \mathrm{m}^{2}$
iv) Roof finish $=1.96 \mathrm{kN} / \mathrm{m}^{2}$

Assume the compressive strength of brick as $10 \mathrm{~N} / \mathrm{mm}^{2}$ and mortar type as M1.
The loading on the wall includes the load from slab ($\mathrm{LL}+\mathrm{DL}$) and self weight of the wall. Assuming the wall thickness as 100 mm and size of each masonry unit as $200 \times 100 \times$ 90 mm ,
Loading on slab:
Live load:
on floor slab $=2 \mathrm{kN} / \mathrm{m}^{2}$
on roof slab $=1.5 \mathrm{kN} / \mathrm{m}^{2}$
Dead load:
Floor finish $=0.2 \mathrm{kN} / \mathrm{m}^{2}$
Roof finish $=1.96 \mathrm{kN} / \mathrm{m}^{2}$
Self weight of slabs $=2 \times 0.1 \times 25=5 \mathrm{kN} / \mathrm{m}^{2}$
Load from slab $=10.66 \mathrm{kN} / \mathrm{m}^{2}$
For 2.65 m length of slab,

Load from slab $\quad=10.66 \times 2.658=28.36 \mathrm{kN} / \mathrm{m}$
Self weight of masonry $=2 \times 0.1 \times 20 \times 3=12 \mathrm{kN} / \mathrm{m}$
Total $=40.36 \mathrm{kN} / \mathrm{m}$
Permissible stress of masonry for M1 mortar and masonry unit of compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$ is taken from Table 8, IS 1905-1987.
Permissible stress $=0.96 \mathrm{~N} / \mathrm{mm}^{2}$
Stress reduction factor, Area reduction factor, Shape modification factor are applied as per CI.5.4.

Stress reduction factor (K K_{st})

Slenderness ratio (Least of $\mathrm{I}_{\mathrm{e}} / \mathrm{t} \& \mathrm{~h}_{\mathrm{e}} / \mathrm{t}$)
From Table 4,

$$
\begin{array}{ll}
h_{e}=0.75 \mathrm{H}=0.75 \times 3=2.25 \mathrm{~m} & \text { [Both ends fixed] } \\
\mathrm{h}_{\mathrm{e}} / \mathrm{t}=2.25 / 0.1=22.5<27 &
\end{array}
$$

Therefore, the stress reduction factor from Table 10 for $\lambda=22.5$ and no eccentricity condition is,

For $22 \rightarrow 0.56 \quad(\mathrm{e}=0)$
For $24 \rightarrow 0.51$
For $22.5 \rightarrow 0.55$
$\underline{K}_{\text {st }}=0.55$

Area reduction factor (K_{A})
[CI.5.4.1.2, IS1905-1987]

$$
\begin{aligned}
& A=0.1 \times 1=0.1 \mathrm{~m}^{2}<0.2 \mathrm{~m}^{2} \\
& \underline{K}_{A_{-}}=0.7+(1.5 \times 0.1)=\underline{0.85}
\end{aligned}
$$

Shape modification factor ($\mathrm{K}_{\text {sh }}$)
Ksh for block of size $200 \times 100 \times 90 \mathrm{~mm}$ laid along 100 mm side, from Table 10 for Height to Width ratio of 90×100,

$$
\frac{\text { Height }}{\text { Width }}=\frac{90}{100}=0.9
$$

For $0.75 x_{0} \rightarrow 1$
For $1 x_{0} \rightarrow 1.1$
For $0.9 x_{0} \rightarrow 1.06$
$\underline{K}_{s h}=1.06$

$$
\begin{aligned}
& \sigma_{\text {per modified }}=\mathrm{K}_{\text {st }} \cdot \mathrm{K}_{\mathrm{A}} \cdot \mathrm{~K}_{\text {sh }} \cdot \sigma_{\text {per }} \\
&=0.55 \times 0.85 \times 1.06 \times 0.96=0.48 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{act} / \mathrm{m}}=\frac{40.36 \times 10^{3}}{100 \times 1000}=0.4036 \mathrm{~N} / \mathrm{mm}^{2}<\sigma_{\text {per }}\left[0.48 \mathrm{~N} / \mathrm{mm}^{2}\right]
\end{aligned}
$$

Hence the adopted thickness of 100mm with M1 mortar and masonry unit with compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$ is safe in carrying the load from slab.
2. In the above problem, design the wall if it is continuous and stiffened by cross wall of 100 mm thickness and length of the wall being 3.6 m .

Loading on the masonry wall $=40.36 \mathrm{kN} / \mathrm{m}$
Actual stress $=\frac{40.36 \times 1000}{100 \times 1000}=0.4036 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\text {per }}$ for M1 mortar and masonry unit of compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$ with 100 mm thickness,
Permissible stress $=0.96 \mathrm{~N} / \mathrm{mm}^{2} \quad$ [From Table 8, IS1905-1987]
Slenderness ratio, $\lambda \rightarrow$ Least of $\mathrm{H}_{\mathrm{e}} / \mathrm{t} \& \mathrm{~L}_{\mathrm{e}} / \mathrm{t}$
$\mathrm{H}_{\mathrm{e}}=0.75 \mathrm{H}=0.75 \times 3=2.25 \mathrm{~m}$
$\mathrm{L}_{\mathrm{e}}=0.8 \mathrm{~L}=0.8 \times 3.7=2.96 \mathrm{~m}$
[From Table 5, IS1905-1987]
For the cross walls provided, stiffening coefficients are found from Table 6, IS1905-1987.
$t_{p} \rightarrow$ Thickness of pier
$t_{p}=3 t w \quad$ [for cross walls] cl.4.6.3, IS1905-1987
$S_{p}=3.7 \mathrm{~m}$,
[$\mathrm{S}_{\mathrm{p}} \rightarrow \mathrm{c} / \mathrm{c}$ spacing of pier]
$\mathrm{t}_{\mathrm{w}}=0.1 \mathrm{~m} \quad\left[\mathrm{t}_{\mathrm{p}} \rightarrow\right.$ thickness of pier]
$t_{p}=3 \mathrm{tw}=0.3 \mathrm{~m} \quad\left[\mathrm{t}_{\mathrm{w}} \rightarrow\right.$ thickness of wall $]$
$\mathrm{w}_{\mathrm{p}}=0.1 \mathrm{~m} \quad\left[\mathrm{w}_{\mathrm{p}} \rightarrow\right.$ width of pier $]$
cl.4.5.3, IS1905-1987
$\frac{t_{p}}{t_{w}}=\frac{0.3}{0.1}=3, \quad \frac{S_{p}}{w_{p}}=\frac{3.7}{0.1}=37$
From Table 6, for $\frac{S_{p}}{w_{p}}=37, \quad \frac{t_{p}}{t_{w}}=3$
$S_{e}=1$
Thickness of wall $=1 \times 0.1=0.1 \mathrm{~m}$
[Considering stiffness]
$\lambda=2.25 / 0.1=22.5<27$
The stress reduction factor $\left(\mathrm{K}_{\mathrm{st}}\right)$ for Table no. 10 for $\lambda=22.5$ with no eccentricity ($\mathrm{e}=0$) condition,

For $\lambda=22$	0.56
For $\lambda=24$	0.51
For $\lambda=22.5$	0.55

$\mathrm{K}_{\mathrm{st}}=0.55$
Area reduction factor for area $=0.1 \times 1=0.1 \mathrm{~m} 2<0.2 \mathrm{~m} 2$,
$K A=0.7+(1.5 \times 0.1)=0.85$
Shape modification factor:
[CI.5.4.1.3]

Ksh for block size of $200 \times 100 \times 90 \mathrm{~mm}$ laid along 100 mm side from Table 10 for height to width ratio of $90 \times 100 \mathrm{~mm}$,
$\frac{\text { Height }}{\text { Width }}=\frac{90}{100}=0.9$
For $H_{t} / W=0.75 \quad 1$
For $\mathrm{H}_{\mathrm{t}} / \mathrm{W}=1 \quad 1.1$
For $\mathrm{H}_{\mathrm{t}} / \mathrm{W}=0.9 \quad 1.06$
$K_{\text {sh }}=1.06$

$$
\begin{aligned}
\sigma_{\text {per modified }} & =\mathrm{K}_{\mathrm{st}} \cdot \mathrm{~K}_{\mathrm{A}} \cdot \mathrm{~K}_{\text {sh }} \cdot \sigma_{\text {per }} \\
& =0.55 \times 0.85 \times 1.06 \times 0.96=0.48 \mathrm{~N} / \mathrm{mm}^{2}>\sigma_{\text {act }}
\end{aligned}
$$

Provided masonry wall of thickness $\underline{100 \mathrm{~mm}}$ with M1 mortar and compressive strength of each unit $10 \mathrm{~N} / \mathrm{mm}^{2}$ is safe.
3. Design an interior cross wall for a two storeyed building to carry 100 mm thick RC slab. Check the safety of the wall if the wall is continuous and cross wall is available on only one side and the storey height is 3.5 m . The wall supports 2.65 m wide slabs on both sides. Loading on the slab is given as below:
i) Live load on floor slab $=2 \mathrm{kN} / \mathrm{m}^{2}$
ii) Live load on roof slab $=1.5 \mathrm{kN} / \mathrm{m}^{2}$
iii) Floor finish $=0.2 \mathrm{kN} / \mathrm{m}^{2}$
iv) Roof finish $=1.96 \mathrm{kN} / \mathrm{m}^{2}$

Assume the compressive strength of brick as $10 \mathrm{~N} / \mathrm{mm}^{2}$ and mortar type as M1.
Loading on slab:
Live load:
on floor slab $=2 \mathrm{kN} / \mathrm{m}^{2}$
on roof slab $=1.5 \mathrm{kN} / \mathrm{m}^{2}$
Dead load:
Floor finish $=0.2 \mathrm{kN} / \mathrm{m}^{2}$
Roof finish $=1.96 \mathrm{kN} / \mathrm{m}^{2}$
Self weight of slabs $=2 \times 0.1 \times 25=5 \mathrm{kN} / \mathrm{m}^{2}$
Load from slab $=10.66 \mathrm{kN} / \mathrm{m}^{2}$
For 2.65 m length of slab,
Load from slab
$=10.66 \times 2.658=28.36 \mathrm{kN} / \mathrm{m}$
Self weight of masonry $=2 \times 0.1 \times 20 \times 3.5=14 \mathrm{kN} / \mathrm{m}$

Total

$$
=\underline{42.36 \mathrm{kN} / \mathrm{m}}
$$

$\sigma_{\text {act } / m}=\frac{42.36 \times 10^{3}}{100 \times 1000}=0.4236 \mathrm{~N} / \mathrm{mm}^{2}$

Permissible stress of masonry for M1 mortar and masonry unit of compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$ is taken from Table 8, IS $1905-1987$.
Permissible stress $=0.96 \mathrm{~N} / \mathrm{mm}^{2}$
Stress reduction factor, Area reduction factor, Shape modification factor are applied as per CI.5.4.

Stress reduction factor (K $\mathrm{K}_{\text {st }}$)

Slenderness ratio (Least of $\mathrm{I}_{\mathrm{e}} / \mathrm{t} \& \mathrm{~h}_{\mathrm{e}} / \mathrm{t}$)
From Table 4,
Effective height, $\quad h_{e}=0.75 \mathrm{H}=0.75 \times 3.5=2.625 \mathrm{~m} \quad$ [Both ends fixed]
Effective length, le $=1.5 \mathrm{~L}=1.5 \times 3.65=5.475 \mathrm{~m} \quad$ [One end fixed, other end free]

$$
h_{e} / t=2.625 / 0.1=26.25<27
$$

Therefore, the stress reduction factor from Table 10 for $\lambda=26.25$ and no eccentricity condition is,

For $26 \rightarrow 0.45 \quad(e=0)$
For $27 \rightarrow 0.43$
For $26.25 \rightarrow 0.3375+0.1075=0.445$
$\underline{K}_{\mathrm{st}}=0.445$

Area reduction factor (K_{A}) [CI.5.4.1.2, IS1905-1987]

$$
\begin{aligned}
& A=0.1 \times 1=0.1 \mathrm{~m}^{2}<0.2 \mathrm{~m}^{2} \\
& \underline{\mathrm{~K}_{A-}}=0.7+(1.5 \times 0.1)=\underline{0.85}
\end{aligned}
$$

Shape modification factor ($\mathrm{K}_{\text {sh }}$)

$\mathrm{K}_{\text {sh }}$ for block of size $200 \times 100 \times 90 \mathrm{~mm}$ laid along 100 mm side, from Table 10 for Height to Width ratio of 90×100,

$$
\frac{\text { Height }}{\text { Width }}=\frac{90}{100}=0.9
$$

For $0.75 \mathrm{x}_{0} \rightarrow 1$
For $1 x_{0} \rightarrow 1.1$
For $0.9 x_{0} \rightarrow 1.06$
$\underline{K}_{\text {sh }}=1.06$

$$
\begin{aligned}
\sigma_{\text {per modified }} & =\mathrm{K}_{\text {st }} \cdot \mathrm{K}_{\mathrm{A}} \cdot \mathrm{~K}_{\text {sh }} \cdot \sigma_{\text {per }} \\
& =0.445 \times 0.85 \times 1.06 \times 0.96=0.385 \mathrm{~N} / \mathrm{mm}^{2} \\
& <\sigma_{\text {act } / m}\left[0.4236 \mathrm{~N} / \mathrm{mm}^{2}\right]
\end{aligned}
$$

Hence the adopted thickness of 100 mm with M1 mortar and masonry unit with compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$ is not safe in carrying the load from slab. The thickness of wall is increased to 200 mm .
Load from slab $=10.66 \mathrm{kN} / \mathrm{m}^{2}$
For 2.65 m length of slab,
Load from slab $\quad=10.66 \times 2.658=28.36 \mathrm{kN} / \mathrm{m}$
Self weight of masonry $=2 \times 0.2 \times 20 \times 3.5=28 \mathrm{kN} / \mathrm{m}$
Total $\quad=56.36 \mathrm{kN} / \mathrm{m}$
Loading on masonry wall $=56.36 \mathrm{kN} / \mathrm{m}$
Actual stress $\sigma_{\text {act }}=\frac{56.36 \times 1000}{200 \times 1000}=0.2818 \mathrm{~N} / \mathrm{mm}^{2}$
Permissible stress of masonry for M1 mortar and masonry unit of compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$ is taken from Table 8, IS $1905-1987$.
Permissible stress $\sigma_{\text {per }}=0.96 \mathrm{~N} / \mathrm{mm}^{2}$
Stress reduction factor, Area reduction factor, Shape modification factor are applied as per CI.5.4.

Stress reduction factor (K_{st})

Slenderness ratio (Least of $\mathrm{I}_{\mathrm{e}} / \mathrm{t} \& \mathrm{~h}_{\mathrm{e}} / \mathrm{t}$)
From Table 4,
Effective height, $\quad h_{e}=0.75 \mathrm{H}=0.75 \times 3.5=2.625 \mathrm{~m} \quad$ [Both ends fixed]
Effective length, $\quad \mathrm{le}=1.5 \mathrm{~L}=1.5 \times 3.65=5.475 \mathrm{~m} \quad$ [One end fixed, other end free]

$$
h_{e} / t=2.625 / 0.2=13.125<27
$$

Therefore, the stress reduction factor from Table 10 for $\lambda=$ 22.5 and no eccentricity condition is, For $12 \rightarrow 0.84 \quad(e=0)$
For $14 \rightarrow 0.78$
For $13.125 \rightarrow 0.3675+0.439=0.806$
$\underline{K}_{\underline{s t}}=0.806$

Area reduction factor (K_{A})

$\mathrm{A}=0.2 \times 1=0.2 \mathrm{~m}^{2}$
$\underline{K}_{A_{-}}=1$

Shape modification factor (K $\mathrm{K}_{\text {sh }}$)
[CI. 5.4.1.3, IS1905-1987]
$\mathrm{K}_{\text {sh }}$ for block of size $200 \times 100 \times 90 \mathrm{~mm}$ laid along 100 mm side, from Table 10 for Height to Width ratio of 90×100,

$$
\frac{\text { Height }}{\text { Width }}=\frac{90}{100}=0.9
$$

For $0.75 x_{0} \rightarrow 1$
For $1 x_{0} \rightarrow 1.1$
For $0.9 \mathrm{x}_{0} \rightarrow 1.06$
$\underline{K}_{\text {sh }}=1.06$

$$
\begin{aligned}
\sigma_{\text {per modified }} & =\mathrm{K}_{\text {st }} \cdot \mathrm{K}_{\mathrm{A}} \cdot \mathrm{~K}_{\text {sh }} \cdot \sigma_{\text {per }} \\
& =0.806 \times 1 \times 1.06 \times 0.96=0.82 \mathrm{~N} / \mathrm{mm}^{2} \\
& >\sigma_{\text {act } / \mathrm{m}}\left[0.2818 \mathrm{~N} / \mathrm{mm}^{2}\right]
\end{aligned}
$$

Hence the adopted thickness of 200mm with M1 mortar and masonry unit with compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$ is safe in carrying the load from slab.
4. Design the interior wall of a single storey building shown in figure. The height of the ceiling is 3.5 m and the load from slab including self weight is $30 \mathrm{kN} / \mathrm{m}^{2}$.

Load from slab $=30 \times 3.65 \quad=109.5 \mathrm{kN} / \mathrm{m}$
Self weight of wall $=0.15 \times 3.5 \times 1 \times 20=10.5 \mathrm{kN} / \mathrm{m}$
Total $=120 \mathrm{kN} / \mathrm{m}$

Actual stress $=\frac{120 \times 1000}{150 \times 1000}=0.8 \mathrm{~N} / \mathrm{mm}^{2}$
Permissible stress of masonry for M1 mortar and masonry unit of compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$ is taken from Table 8, IS $1905-1987$.
Permissible stress $\sigma_{\text {per }}=0.96 \mathrm{~N} / \mathrm{mm}^{2}$
Stress reduction factor, Area reduction factor, Shape modification factor are applied as per
CI.5.4.

Stress reduction factor (K_{st})

Slenderness ratio (Least of $\mathrm{l}_{\mathrm{e}} / \mathrm{t}$ \& $\mathrm{h}_{\mathrm{e}} / \mathrm{t}$)
From Table 4,
Effective height, $\quad h_{e}=0.75 \mathrm{H}=0.75 \times 3.5=2.625 \mathrm{~m} \quad$ [Both ends fixed]
Effective length, $\quad l e=1 \mathrm{~L}=1.0 \times 8.15=8.15 \mathrm{~m}$

$$
h_{e} / t=2.625 / 0.2=13.125<27
$$

For the cross walls provided, stiffening coefficients are found from Table 6, IS1905-1987.
$t_{p}=3 t w \quad$ [for cross walls] cl.4.6.3, IS1905-1987
$S_{p}=8.15 \mathrm{~m}, \quad\left[\mathrm{~S}_{\mathrm{p}} \rightarrow \mathrm{c} / \mathrm{c}\right.$ spacing of pier/wall]
$\mathrm{t}_{\mathrm{w}}=0.15 \mathrm{~m} \quad\left[\mathrm{t}_{\mathrm{p}} \rightarrow\right.$ thickness of pier/wall]
$\mathrm{t}_{\mathrm{p}}=3 \mathrm{tw}=0.45 \mathrm{~m} \quad\left[\mathrm{t}_{\mathrm{w}} \rightarrow\right.$ thickness of wall]
$\mathrm{w}_{\mathrm{p}}=0.15 \mathrm{~m} \quad\left[\mathrm{w}_{\mathrm{p}} \rightarrow\right.$ width of pier/wall] $] \quad$ cl.4.5.3, IS1905-1987
$\frac{t_{p}}{t_{w}}=\frac{0.45}{0.15}=3, \quad \frac{S_{p}}{w_{p}}=\frac{8.15}{0.15}=54.3$
From Table 6, for $\frac{S_{p}}{w_{p}}=54.3, \quad \frac{t_{p}}{t_{w}}=3$
$S_{e}=1$
Thickness of wall $=1 \times 0.2=0.2 \mathrm{~m}$
[Considering stiffness]
$\lambda=2.625 / 0.2=17.5<27$

Therefore, the stress reduction factor from Table 10 for $\lambda=17.5$ and no eccentricity condition is,
For $16 \rightarrow 0.73 \quad(\mathrm{e}=0)$
For $18 \rightarrow 0.67$
For $13.125 \rightarrow 0.1825+0.5025=0.685$
$\underline{K}_{s t}=0.685$

Area reduction factor $\left(\mathrm{K}_{\mathrm{A}}\right)$

$$
\begin{aligned}
& A=0.15 \times 1=0.15 \mathrm{~m}^{2} \\
& \underline{K}_{A_{-}}=0.7+(1.5 \times 0.15)=\underline{0.925}
\end{aligned}
$$

$\mathrm{K}_{\text {sh }}$ for block of size $200 \times 100 \times 90 \mathrm{~mm}$ laid along 100 mm side, from Table 10 for Height to Width ratio of 90×100,

$$
\frac{\text { Height }}{\text { Width }}=\frac{90}{100}=0.9
$$

For $0.75 \mathrm{x}_{0} \rightarrow 1$
For $1 x_{0} \rightarrow 1.1$
For $0.9 x_{0} \rightarrow 1.06$
$\underline{K}_{\text {sh }}=1.06$

$$
\begin{aligned}
\sigma_{\text {per modified }} & =\mathrm{K}_{\text {st }} \cdot \mathrm{K}_{\mathrm{A}} \cdot \mathrm{~K}_{\text {sh }} \cdot \sigma_{\text {per }} \\
& =0.685 \times 0.925 \times 1.06 \times 0.96=0.647 \mathrm{~N} / \mathrm{mm}^{2} \\
& <\sigma_{\text {act } / m}\left[0.8 \mathrm{~N} / \mathrm{mm}^{2}\right]
\end{aligned}
$$

Hence the adopted M1 mortar and masonry unit with compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$ is not sufficient in carrying the load.
Increase the strength of brick unit and mortar as,
H1 mortar and masonry unit compressive strength $15 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\text {per }} \quad=1.31 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\text {per modified }}=0.88 \mathrm{~N} / \mathrm{mm}^{2}$
Therefore, the interior wall of 150 mm thickness is safe with H 1 mortar and brick units of compressive strength $15 \mathrm{~N} / \mathrm{mm}^{2}$.
5. Design a masonry wall of height 4 m subjected to a load of $20 \mathrm{kN} / \mathrm{m}$. Use M1 mortar. The wall is unstiffened[no need to find effective length] at the ends.
Assume a thickness of wall of 300 mm
Actual stress $=\frac{20 \times 1000}{300 \times 1000}=0.066 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\text {per }} \quad=0.96 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{H}_{\mathrm{e}}=0.75 \mathrm{H}=0.75 \times 4=3 \mathrm{~m}$
$\lambda=\frac{3}{0.3}=10$
$\mathrm{K}_{\mathrm{st}}=0.89$
For $A=0.3 \times 1=0.3 \mathrm{~m} 2, \mathrm{KA}=1$
$K_{\text {sh }}=1.06$
$\sigma_{\text {per modified }} \quad=0.27 \mathrm{~N} / \mathrm{mm}^{2}>\sigma_{\text {act }}\left[0.066 \mathrm{~N} / \mathrm{mm}^{2}\right]$
Hence, safe.
6. Design the wall in the GF level for the loading condition as shown in figure.

Loading on brick wall:
Load from slab $=12+10+10=32 \mathrm{kN} / \mathrm{m}$
Weight of wall (self wt.) $=3 \times 2 \times 0.1 \times 3 \times 20=36 \mathrm{kN} / \mathrm{m}$
Total
$=68 \mathrm{kN} / \mathrm{m}$
Actual stress $=\frac{68 \times 1000}{2 \times 100 \times 1000}=0.34 \mathrm{~N} / \mathrm{mm}^{2}$
Use M1 mortar and brick of compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$.
$\sigma_{\text {per }}=0.96 \mathrm{~N} / \mathrm{mm}^{2} \quad$ [From Table 8, IS1905-1987]
$(\lambda \leq 6)$
$h_{\text {eff }}=0.75 \times h=0.75 \times 3=2.25 \mathrm{~m}$
$\mathrm{t}_{\mathrm{e}}=2 / 3\left(\mathrm{t}_{\mathrm{w}}+\mathrm{t}_{\mathrm{w}}\right)=2 / 3(0.1+0.1)=0.133 \mathrm{~m}$

$\lambda=\frac{2.25}{t_{e}}=\frac{2.25}{0.133}=16.875$
From Table 8, IS1905-1987,
$\lambda \rightarrow 16, \quad 0.75$
$\lambda \rightarrow 18, \quad 0.67$
$\lambda \rightarrow 16.875, \quad(0.421875+0.293125=0.715)$
Area of wall (each leaf) $=0.1 \times 1=0.1 \mathrm{~m}^{2}<0.2 \mathrm{~m}^{2}$
$\mathrm{K}_{\mathrm{A}}=0.85$
$K_{\text {sh }}=1.06$

$$
\begin{aligned}
\sigma_{\text {per (modified) }} & =\mathrm{K}_{\mathrm{st}} \times \mathrm{K}_{\mathrm{A}} \times \mathrm{K}_{\mathrm{sh}} \times \sigma_{\text {per }} \\
& =0.704 \times 0.85 \times 1.06 \times 1.96=0.61 \mathrm{~N} / \mathrm{mm}^{2}>\sigma_{\mathrm{act}}
\end{aligned}
$$

Therefore, the cavity wall is safe with M1 mortar and masonry unit of compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$.
2. Design a cavity wall of overall thickness 250 mm and thickness of each leaf 100 mm for a three storeyed building. The wall is stiffened by intersecting walls 200 mm thick at $3600 \mathrm{~mm} \mathrm{c} / \mathrm{c}$. The ceiling height is 3 m and the loading from roof is $16 \mathrm{kN} / \mathrm{m}$.
The loading from each floor is $12.5 \mathrm{kN} / \mathrm{m}$.
Load from roof $\quad=16 \mathrm{kN} / \mathrm{m}$

Load from floor $=12.5+12.5 \mathrm{kN} / \mathrm{m}$
Wall load [$3 \times 0.2 \times 20$] $=36 \mathrm{kN} / \mathrm{m}$

$$
\text { Total }=\underline{77 \mathrm{kN} / \mathrm{m}}
$$

Actual stress $=\sigma_{\mathrm{ac}}=\frac{77 \times 10^{3}}{200 \times 1000}=0.39 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\text {per }}$:
Assume M1 mortar and brick of compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$.
From Table 7, IS1905-1987,
$\sigma_{\text {per }}=0.96 \mathrm{~N} / \mathrm{mm}^{2} \quad(\lambda \leq 6)$
Effective height $=h_{\text {eff }}=0.75 \times 3=2.25 \mathrm{~m}$
Effective length $=l_{\text {eff }}=0.8 \mathrm{I}=0.8 \times 3600=2880 \mathrm{~mm}=2.88 \mathrm{~m}$
Stiffening Coefficient:
Since cross wall is available along one leaf, Sc for
$\frac{S_{p}}{w_{p}}=\frac{3.6}{0.2}=18, \quad \frac{t_{p}}{t_{w}}=\frac{3 t_{w}}{t_{w}}=\frac{0.3}{0.1}=3$
From Table 8, IS1905-1987,
$\rightarrow 15$,
1.2
\rightarrow 20,
1
$\rightarrow 18$,
$0.48+0.6=1.08$
Effective thickness of cavity wall, $\mathrm{t}_{\mathrm{e}}=2 / 3(1.08(0.1)+0.1)=0.139 \mathrm{~m}$
$\lambda=\frac{2.25}{0.139}=16.18$
$\lambda \rightarrow 16, \quad 0.73$
$\lambda \rightarrow 20, \quad 0.67$
$\lambda \rightarrow 16.18, \quad 0.664+0.0603=0.7243$
$\mathrm{K}_{\mathrm{st}}=0.72$
Area $=0.1 \times 1=0.1 \mathrm{~m}^{2}<0.2 \mathrm{~m}^{2}$
$\mathrm{K}_{\mathrm{A}}=0.85$
$K_{\text {sh }}=1.06$
$\sigma_{\text {per (modified) })}=0.62 \mathrm{~N} / \mathrm{mm}^{2}>\sigma_{\text {act }}\left[0.39 \mathrm{~N} / \mathrm{mm}^{2}\right]$
3. Design a masonry column to carry a load of 150 kN . The height of the column is 2000 mm . The column is restrained against translation (hinged) only.
Assume a column of size $400 \times 400 \mathrm{~mm}$.
Use M1 mortar and brick of compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$.
Actual stress $=\sigma_{\text {act }}=\frac{150 \times 10^{3}}{400 \times 400}=0.94 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\text {per: }}$
$\mathrm{h}_{\text {eff }}=\mathrm{h}[$ Table 4, IS1905-1987]
$\lambda=2000 / 400=5<6$
There is no need for Stress reduction factor $\left(\mathrm{K}_{\text {st }}=1\right)$
From Table 7, $\sigma_{\text {per }}=0.96 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{A}_{\text {st }}=0.4 \times 0.4=0.16 \mathrm{~m}^{2}<0.2 \mathrm{~m}^{2}$
$\mathrm{K}_{\mathrm{A}}=0.7+(1.5 \times 0.4 \times 0.4)=0.94$
$\mathrm{K}_{\text {sh }}=1.06$
$\sigma_{\text {per }(\text { modified })}=0.94 \times 0.96 \times 1 \times 1.06=0.98 \mathrm{~N} / \mathrm{mm}^{2}$.
$\sigma_{\text {act }}<\sigma_{\text {per }}$
Therefore, the masonry column of size $400 \times 400 \mathrm{~mm}$ with M1 mortar and brick unit of compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$ is safe to carry a load of 150 kN .

Note: Boundary condition is assumed if not given.
4. Design an interior wall of a single storeyed workshop building of height 5.4 m supporting a RC roof. Assume roof load as $45 \mathrm{kN} / \mathrm{m}$. The wall is stiffened by piers at equal intervals shown in figure.

Height $=5.4 \mathrm{~m}, \mathrm{w}=45 \mathrm{kN} / \mathrm{m}$

Since there is an increase in width at the pier, the actual stress is found for the wall length of 3.6 m (One bay).
C/s area of one bay $=(3.6 \times 0.2)+4(0.1 \times 0.1)=0.76 \mathrm{~m}^{2}$
Loading per bay (for 3.6 m length) $=45 \times 3.6=162 \mathrm{kN}$
Load from brick wall

$$
\begin{array}{cl}
=0.76 \times 5.4 \times 20 & =82.08 \mathrm{kN} \\
\text { Total } & =244.08 \mathrm{kN}
\end{array}
$$

Actual stress $=\sigma_{\text {act }}=\frac{244.08 \times 10^{3}}{0.76 \times 10^{6}}=0.321 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\text {per: }}$
$h_{\text {eff }}=0.75 \mathrm{~h}=4.05 \mathrm{~m}$ [Table 4, IS1905-1987] demise
leff $=0.8 \mathrm{l}=0.8 \times 3.6=2.88 \mathrm{~m}$
$\lambda=2.88<6$
There is no need for Stress reduction factor $\left(\mathrm{K}_{\text {st }}=1\right)$
From Table 7, $\sigma_{\text {per }}=0.96 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{A}_{\mathrm{st}}=0.4 \times 0.4=0.16 \mathrm{~m}^{2}<0.2 \mathrm{~m}^{2}$
$\mathrm{K}_{\mathrm{A}}=0.7+(1.5 \times 0.4 \times 0.4)=0.94$
$\mathrm{K}_{\text {sh }}=1.06$
$\sigma_{\text {per }(\text { modified })}=0.94 \times 0.96 \times 1 \times 1.06=0.98 \mathrm{~N} / \mathrm{mm}^{2}$.
$\sigma_{\text {act }}<\sigma_{\text {per }}$
Therefore, the masonry column of size $400 \times 400 \mathrm{~mm}$ with M1 mortar and brick unit of compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$ is safe to carry a load of 150 kN .
Stiffening coefficient,
$\frac{S_{p}}{w_{p}}=\frac{3.6}{0.2}=18, \quad \frac{t_{p}}{t_{w}}=\frac{0.4}{0.2}=2$
(tp \rightarrow depth of pier (0.4))
Sc=1.04
$\mathrm{t}_{\mathrm{eff}}=1.04 \times 0.2=0.208 \mathrm{~m}$
λ is the least of $H_{\text {eff }}$ and $L_{\text {eff }}$
$\lambda=\frac{2.88}{0.208}=13.85$
$\mathrm{Kst}=0.785$
Area reduction coefficient $=\frac{0.76}{3.6}=0.211>0.2$
$\mathrm{K}_{\mathrm{A}}=1 \quad$ [CI.5.4.1.2, IS1905-1987]
$K s h=1.06$
$\sigma_{\text {per (modified) }}=0.785 \times 0.96 \times 1 \times 1.06=0.79 \mathrm{~N} / \mathrm{mm}^{2}>\sigma_{\text {act }}$
Inference : Hence the brick wall is safe with M1 mortar and brick of compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$.
5. Design a brick masonry column of height 3 m , tied effectively, fixed at top and bottom. The load from slab is 100 kN , including self weight of the brick pillar.
Load from slab $=100 \mathrm{kN}$
Self weight of brick pillar $=0.4 \times 0.4 \times 20 \times 3=9.6 \mathrm{kN}$

$$
\text { Total } \quad=109.6 \mathrm{kN}
$$

Assume a column size of $400 \mathrm{~mm} \times 400 \mathrm{~mm}$.
Actual stress $=\frac{109.6 \times 10^{3}}{400 \times 400}=0.685 \mathrm{~N} / \mathrm{mm}^{2}$
Assume grade of mortar as M1 and compressive strength of $0.96 \mathrm{~N} / \mathrm{mm}^{2}$
$h_{\text {eff }}=0.75 . \mathrm{H}=2.25 \mathrm{~m}$
$\lambda=\frac{2.25}{0.4}=5.625<6$
There is no need of stress reduction factor.
$\mathrm{K}_{\mathrm{st}}=1$
$A=0.4 \times 0.4=0.16 \mathrm{~m}^{2}<0.2 \mathrm{~m}^{2}$
$\mathrm{K}_{\mathrm{A}}=0.7+(1.5 \times 0.4 \times 0.4)=0.94$
$\mathrm{K}_{\text {sh }}=1.06 \quad$ [Brick unit $200 \times 100 \times 90$]
$\sigma_{\text {per (modified) }}=0.9565 \mathrm{~N} / \mathrm{mm}^{2}>\sigma_{\text {act }}$
Hence the brick wall is safe with M1 mortar and compressive strength of $10 \mathrm{~N} / \mathrm{mm}^{2}$.
6. Design an interior wall of a 3 storeyed building with ceiling height of each storey as 3 m . The wall is unstiffened and 3.6 m in length. Load from roof is $12 \mathrm{kN} / \mathrm{m}$ and from each floor is $10 \mathrm{kN} / \mathrm{m}$. Select a cavity wall with overall thickness 250 mm and length between each leaf as 50 mm .

$h=3 m, l=3.6 \mathrm{~m}$
Load from roof

$$
\begin{aligned}
& =12 \mathrm{kN} / \mathrm{m} \\
& \quad=10+10 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

Load from each floor
Self weight of wall $=3 \times 2 \times 0.1 \times 3 \times 20=36 \mathrm{kN} / \mathrm{m}$
Total $=68 \mathrm{kN} / \mathrm{m}$

Actual stress $=\frac{68 \times 10^{3}}{2 \times 100 \times 1000}=0.34 \mathrm{~N} / \mathrm{mm}^{2}$
Use M1 mortar and brick of compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$,
$\sigma_{\text {per }}=0.96 \mathrm{~N} / \mathrm{mm}^{2}$
$h_{\text {eff }}=0.75 \times 3=2.25 \mathrm{~m}$
$\mathrm{t}_{\mathrm{e}}=2 / 3\left(\mathrm{t}_{\mathrm{w}}+\mathrm{t}_{\mathrm{w}}\right)=0.133 \mathrm{~m}$
$\lambda=\frac{2.25}{t_{e}}=16.875$
From Table 8, IS1905-1987,
$K_{\text {st }}=0.704$
Area of wall $=0.1 \times 1=0.1 \mathrm{~m}^{2}<0.2 \mathrm{~m}^{2}$
$K_{A}=0.85$
$\mathrm{K}_{\text {sh }}=1.06$
$\sigma_{\text {per (modified) }}=0.704 \times 0.85 \times 1.06 \times 0.96=0.61 \mathrm{~N} / \mathrm{mm}^{2}>\sigma_{\text {act }}$
Hence the brickwork is safe with M1 mortar and brick of compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$.

MASONRY WALL SUBJECTED TO CONCENTRATED LOAD

$\sigma_{b r}<\sigma_{b r}$ per
where, $\sigma_{\mathrm{br}}=\frac{\text { Load_from_beam }}{\text { Bearing_area }}=\frac{P}{A_{b r}}$,
where, $\mathrm{P} \rightarrow$ reaction from conc. load [Eg: From Beam]
$\mathrm{A}_{\mathrm{br}} \rightarrow$ Bearing area
$\sigma_{\text {br per }}=1.5\left(\sigma_{\text {per }}\right) \quad\left[\sigma_{\text {per }}\right.$ given in Table 8, IS19051987]
When concentrated load is applied on a masonry wall, the wall is checked for load bearing stress.

Permissible stress in bearing is taken as 50% more than the value given in Table 7 of IS1905-1987.
The angle of dispersion below the concentrated load is 30° on each side.
Therefore, the actual stress is,
$\sigma_{\text {act }}=P / A$,
where, $A \rightarrow$ Area for 1 m run $=L x t$,
$\mathrm{L} \rightarrow$ Length of load dispersion $=\frac{2 H}{\tan 60^{\circ}}$,

$\mathrm{H} \rightarrow$ Height of wall

For the wall to be safe in carrying the load, $\sigma_{\text {act }}<\sigma_{\text {per }}$

1) Design a solid wall of a mill building 3 m height securely tied with roof and floor units. The wall supports two beams on either side exerting reactions of 30 kN and 20 kN . Thickness of wall is 230 mm and the beam bears on the wall for 115 mm (width of beam). Neglect load due to self weight.
$A_{b r}=230 \times 115=26450 \mathrm{~mm}^{2}$
$\sigma_{\mathrm{br}}=\frac{P}{A_{b r}}=\frac{(30+20) x 10^{3}}{26450}=1.89 \mathrm{~N} / \mathrm{mm}^{2}<\sigma_{\text {per }}$ in bearing
The values given in Table 8 are increased by 50% for $\sigma_{\text {per }}$ in bearing.
Therefore, assume H1 grade of mortar and brick of compressive strength $15 \mathrm{~N} / \mathrm{mm}^{2}$.
$\sigma_{\text {per }}=1.31 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\text {per br }}=1.5 \times 1.31=1.965 \mathrm{~N} / \mathrm{mm}^{2}$
Check for compressive stress:
$\sigma_{\text {act }}=\mathrm{P} / \mathrm{A}, \quad \mathrm{A}=\mathrm{Lxt}, \quad$ where, $\mathrm{L} \rightarrow$ Length of load dispersion
$\mathrm{L}=\frac{2 H}{\tan 60^{\circ}}=\frac{2 \times 3}{\tan 60^{\circ}}=3.464 \mathrm{~m}$
$\mathrm{~A}=3.464 \times 1000 \times 230=796720 \mathrm{~mm}^{2}$
$\sigma_{\text {act }}=\frac{50 \times 10^{3}}{796720}=0.063 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\text {per }}=1.31 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{~K}_{\text {st }}=0.89$
$\mathrm{~K}_{\mathrm{A}}=1$
$\mathrm{~K}_{\text {sh }}=1.06$

$$
\begin{aligned}
\sigma_{\text {per modified }} & =\mathrm{K}_{\mathrm{st}} \times \mathrm{K}_{\mathrm{A}} \times \mathrm{K}_{\mathrm{sh}} \times \sigma_{\text {per }} \\
& =0.89 \times 1 \times 1 \times 1.31=1.1659 \mathrm{~N} / \mathrm{mm}^{2}>\sigma_{\text {act }}\left[0.063 \mathrm{~N} / \mathrm{mm}^{2}\right]
\end{aligned}
$$

The wall is safe in carrying a concentrated load with H 1 mortar and brick of compressive strength $15 \mathrm{~N} / \mathrm{mm}^{2}$.
2) Design the exterior wall of a workshop building 3.6 m height carrying steel trusses at 4.5 m spacing. The wall is securely tied at roof and floor levels. The wall is of thickness 200 mm and the truss bears on the wall for 200 mm and load from the truss is 30 kN .
[Length is considered only for piers and cross walls]
$A_{b r}=200 \times 200=40000 \mathrm{~mm}^{2}$
$\sigma_{\text {br }}=\frac{30 \times 10^{3}}{40000}=0.75 \mathrm{~N} / \mathrm{mm}^{2}<\sigma_{\text {br per }} \rightarrow\left[1.5\left(\sigma_{\text {per }}\right)=1.5 \times 0.96=1.44 \mathrm{~N} / \mathrm{mm}^{2}\right]$
Assume M1 mortar and brick of compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$.
Check for compressive stress:
$\sigma_{\mathrm{ac}}=\mathrm{P} / \mathrm{A}$
$\mathrm{L}=\frac{2 H}{\tan 60^{\circ}}=4.157 \mathrm{~m}$
$A=4.157 \times 10^{3} \times 200=956110 \mathrm{~mm}^{2}$
$\sigma_{\text {act }}=\frac{30 \times 10^{3}}{956110}=0.036 \mathrm{~N} / \mathrm{mm}^{2}$
$H_{\text {eff }}=0.75 \times 3.6=2.7 \mathrm{~m}$
$\mathrm{L}_{\text {eff }}=0.8 \times 4.157=3.3256 \mathrm{~m}$
$\lambda=\frac{2.7 \times 10^{3}}{2300}=13.5$
$A=4.157 \times 0.2=0.8314 \mathrm{~m}^{2}>0.2 \mathrm{~m}^{2}$
$\mathrm{K}_{\mathrm{A}}=1$
$\mathrm{K}_{\mathrm{st}}=0.795$
$\mathrm{K}_{\text {sh }}=1.06$
$\sigma_{\text {per modified }}=0.81 \mathrm{~N} / \mathrm{mm}^{2}$
3) In the above problem, design the wall if piers are available below the truss and size of pier is $200 \times 400 \mathrm{~mm}$.
Here, we need to take the length.
If the truss fully rests on
pier, bearing area,
$A_{b r}=80000 \mathrm{~mm}^{2}$
$\mathrm{P}=30 \times 10^{3} \mathrm{~N}$

$\sigma_{b r}=\frac{30 \times 10^{3}}{200 \times 400}$
$\sigma_{\mathrm{br}}=0.375 \mathrm{~N} / \mathrm{mm}^{2}<\sigma_{\text {br per }} \rightarrow\left[1.5(0.96)=1.44 \mathrm{~N} / \mathrm{mm}^{2}\right]$
Using M1 mortar and brick of compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$,
Check for compressive stress:
$\sigma_{\mathrm{ac}}=\mathrm{P} / \mathrm{A}$
$\mathrm{L}=\frac{2 H}{\tan 60^{\circ}}=4.16 \mathrm{~m}$
$H_{\text {eff }}=0.75 \times 3.6=2.7 \mathrm{~m}$

$$
L_{\text {eff }}=0.8 \times L=0.8 \times 4.5=3.6 \mathrm{~m}
$$

$t_{e}=S_{c} \times t$
$\frac{S_{p}}{W_{p}}=\frac{4.5}{0.2}=22.5, \quad \frac{t_{p}}{t_{w}}=\frac{0.4}{0.2}=2$
$S_{\mathrm{c}}=1$
$\mathrm{t}_{\mathrm{e}}=1 \times 0.2=0.2 \mathrm{~m}$
$\lambda=\frac{2.7}{0.2}=13.5$
$A=L x t=4.5 \times 0.2=0.9 \mathrm{~m}^{2}>0.2 \mathrm{~m}^{2}$
$K_{A}=1$
$\mathrm{K}_{\mathrm{st}}=0.795$
$\sigma_{\text {act }}=\frac{30 \times 10^{3}}{4.5 \times 0.2}=0.03 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\text {per modified }}=1 \times 1 \times 0.795 \times 1.06 \times 0.96=0.8089 \mathrm{~N} / \mathrm{mm}^{2}$
Hence the wall is safe with M1 mortar and brick of compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$.

ECCENTRICALLY LOADED BRICK MASONRY

Eccentricity - Offset distance from CG of member to CG of load
Occurs in,
i) Exterior wall -Bearing not sufficient
ii) Flexible slab - Excessive deflection (timber)
iii) When span is very large, code recommends to take some amount of eccentricity
$\sigma_{\text {act }}=\frac{P}{A}+\frac{M}{Z}<1.25\left(\sigma_{\text {per modified }}\right)$,
where, $M \rightarrow P \times e, \quad Z \rightarrow b . t^{2} / 6, \quad b=1 m$ (wall)

Guidelines given in Appendix A

Eccentricity in loading occurs in loading on walls due to various reasons causing reduction in stress. The cases where eccentricity needed to be assumed are given in Appendix A of IS1905-1987.

1. For an exterior wall, when span of roof is more than 30 times the thickness of wall, the eccentricity assumed is one sixth of the bearing width.

$$
\begin{aligned}
& L>30 t_{w} \\
& E=1 / 6\left(t_{w}\right)
\end{aligned}
$$

2. When bearing is not sufficient, eccentricity assumed is $t_{w} / 12$
3. When flexible floors are adopted, for full width bearing, eccentricity assumed is $t_{w} / 6$.
4. For interior walls, when there is unequal length of slabs on both sides and then the difference between the loading is greater than 15%, moment is generated for which, $e=M / P$.

L2
L1

Actual stress $\left(\sigma_{\text {act }}\right)$ is the sum of direct compressive stress P/A and bending stress M / Z. The permissible stress given in Table 8 can be increased by 25% and modification factors applied on it.

1) Design an exterior wall of height 3.5 m , which is unstiffened. The slab is light weight flexible slab of length 3.5 m . Assume the unit weight of slab as $15 \mathrm{kN} / \mathrm{m}^{3}$ with thickness 0.2 m .

Half of the load from the slab comes to the wall and since the slab is flexible, eccentricity considered as per Appendix A of IS1905-1987.

Assume 200mm thick wall with M1 mortar and brick of compressive strength of $10 \mathrm{~N} / \mathrm{mm}^{2}$.

Loading on wall:
Load from slab $=15 \times 0.2 \times 3.5 / 2=5.25 \mathrm{kN} / \mathrm{m}$
Self weight of wall $=0.2 \times 3.5 \times 20=14 \mathrm{kN} / \mathrm{m}$
Total $\quad=\underline{19.25 \mathrm{kN} / \mathrm{m}}$
$\mathrm{e}=\mathrm{t}_{\mathrm{w}} / 6=33.33 \mathrm{~mm}$
$M=P x e$
Moment due to eccentricity $=19.25 \times 10^{3} \times 33.33=641.67 \times 10^{3} \mathrm{Nmm}$
$Z=\mathrm{bt}^{2} / 6=1000 \times 200^{2} / 6=6.67 \times 10^{6} \mathrm{~mm}^{3}$
$\mathrm{M} / \mathrm{Z}=0.096 \mathrm{~N} / \mathrm{mm}^{2}$
Total stress $=\frac{P}{A}+\frac{M}{Z}=\frac{19.25 \times 10^{3}}{1000 \times 200}+0.096=0.192 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\text {per }}:$
Use M1 mortar and brick of compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$,
$\sigma_{\text {per }}=0.96 \mathrm{~N} / \mathrm{mm}^{2}$
Stress reduction factor ($\mathrm{K}_{\text {st }}$)
Slenderness ratio (Least of $\mathrm{I}_{\mathrm{e}} / \mathrm{t} \& \mathrm{~h}_{\mathrm{e}} / \mathrm{t}$)
From Table 4,

$$
\begin{array}{ll}
h_{e}=0.75 \mathrm{H}=0.75 \times 3=2.25 \mathrm{~m} & \text { [Both ends fixed] } \\
\mathrm{h}_{\mathrm{e}} / \mathrm{t}=2.625 / 0.2=13.125<27 &
\end{array}
$$

Therefore, the stress reduction factor from Table 10 for $\lambda=13.125$ and no eccentricity condition is,
For $12 \rightarrow 0.78 \quad(\mathrm{e}=0)$
For $14 \rightarrow 0 . .7$
For $13.125 \rightarrow 0.735$
$\underline{K}_{s t}=0.735$

Area reduction factor (K_{A}) [CI.5.4.1.2, IS1905-1987]
For thickness $t=0.2 m, A=0.2 \mathrm{~m}^{2}$
$\underline{K}_{A_{-}}=1$
Shape modification factor ($\mathrm{K}_{\text {sh }}$) [CI. 5.4.1.3, IS1905-1987]
$\mathrm{K}_{\text {sh }}$ for block of size $200 \times 100 \times 90 \mathrm{~mm}$ laid along 100 mm side, from Table 10 for Height to Width ratio of 90×100,

$$
\frac{\text { Height }}{\text { Width }}=\frac{90}{100}=0.9
$$

For $0.75 \mathrm{x}_{0} \rightarrow 1$
For $1 x_{0} \rightarrow 1.1$
For $0.9 x_{0} \rightarrow 1.06$
$\underline{K}_{\text {sh }}=1.06$

$$
\begin{aligned}
& \sigma_{\text {per modified }}=\mathrm{K}_{\text {st }} \cdot \mathrm{K}_{\mathrm{A}} \cdot \mathrm{~K}_{\text {sh }} \cdot \sigma_{\text {per }} \\
&=0.735 \times 1 \times 1.06 \times 1.25 \times 0.96=0.935 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\text {act }}\left[0.192 \mathrm{~N} / \mathrm{mm}^{2}\right]<1.25 \sigma_{\text {per }}\left[1.17 \mathrm{~N} / \mathrm{mm}^{2}\right]
\end{aligned}
$$

Note : For brick masonry columns laterally supported by beams,

$$
\mathrm{H}_{\mathrm{e}}=\mathrm{H}
$$

Only when the column is not laterally supported (laterally unsupported),

$$
H_{e}=2 \mathrm{H}
$$

2) Design a masonry column tied effectively at top and bottom. Load from slab is 100 kN .

Assume size of column as $400 \times 400 \mathrm{~mm}$
$\sigma_{\text {act }}=\frac{100 \times 10^{3}}{400 \times 400}=0.625 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\text {per }}=0.96 \mathrm{~N} / \mathrm{mm}^{2}$
Heff $=\mathrm{H}=2 \mathrm{~m}$
$\lambda=5<6$
$\mathrm{K}_{\mathrm{st}}=1$
$\mathrm{K}_{\text {sh }}=1.06$
$\mathrm{K}_{\mathrm{A}}=0.94$
$\sigma_{\text {per modified }}=0.957 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\text {act }}<\sigma_{\text {per }}$
3) Design an interior wall of
a single storeyed building supporting unequal concrete roof slabs. The plan is as shown in figure. Assume triangular pressure distribution and unit weight of slab is $10 \mathrm{kN} / \mathrm{m}^{3}$. The height of the wall is 3.8 m and the wall is fixed to the foundation block below.

Height $=3.8 \mathrm{~m}$
$\mathrm{e}=\frac{t_{w}}{6}+\frac{t_{w}}{6}=\frac{2 t_{w}}{6}=\frac{t_{w}}{3}$
$\sigma_{\text {act }}=\frac{P}{A}+\frac{M}{Z}$
Loading from slab 1 :
$=$ Area of triangle x Load intensity on slab $=\frac{(1 / 2) \times 3.6 \times 1.8 \times 10}{3.6} \quad=9 \mathrm{kN} / \mathrm{m}$
Loading from slab 2 :
$=$ Area of rectangle \times Load intensity on slab $=\frac{(1 / 2) x(1.8 / 2) x 3.6 \times 10}{3.6}=4.5 \mathrm{kN} / \mathrm{m}$
Self weight of brickwork $=0.2 \times 3.8 \times 20 \quad=15.2 \mathrm{kN} / \mathrm{m}$
$=28.7 \mathrm{kN} / \mathrm{m}$

Since the difference in loading is 100% [$>15 \%$], there is an eccentricity in the loading. The eccentricity in the loading as per Appendix A of IS1905-1987 is,
$\mathrm{e}=\frac{t_{w}}{6}+\frac{t_{w}}{6}=\frac{2 t_{w}}{6}=\frac{t_{w}}{3}$
$M \rightarrow$ (Difference in load from slab \times Eccentricity)

$$
=(9-4.5) \times 10^{3} \times 200 / 3=300 \times 10^{3} \mathrm{Nmm}
$$

$\sigma_{\text {act }}=\frac{P}{A}+\frac{M}{Z}, \quad$ where $\mathrm{Z}=\frac{b \cdot t^{2}}{6}=\frac{1000 \times 200^{2}}{6}=6.67 \times 10^{6} \mathrm{~mm}^{3}$
$\sigma_{\text {act }}=\frac{28.7 \times 10^{3}}{1000 \times 200}+\frac{300 \times 10^{3}}{6.67 \times 10^{3}}=0.1885 \mathrm{~N} / \mathrm{mm}^{2}$
$e=t_{w} / 3 \quad \rightarrow \quad e / t_{w}=1 / 3$
λ is least of $\left(H_{e} / t_{e}\right.$ and $\left.L_{e} / t_{e}\right)$
Assume width of the cross wall as 200 mm
$\mathrm{t}_{\mathrm{e}}=\mathrm{tx} \mathrm{S}_{\mathrm{c}}$
$\frac{S_{p}}{W_{p}}=\frac{3.8}{0.2}=19, \quad \frac{t_{p}}{t_{w}}=\frac{0.6}{0.2}=3$
$S_{C}=1.04$
$t_{e}=t \times S c=1.04 \times 0.2=0.208 \mathrm{~m}$
$\mathrm{H}_{\text {eff }}=0.75 \times 3.8=2.85 \mathrm{~m}$
$\lambda=\frac{2850}{208}=13.7$
$L_{\text {eff }}=0.8 \mathrm{~L}=0.8 \times 3.60=2.88 \mathrm{~m}$
$\lambda=13.8$
$\lambda \rightarrow 12 \quad 0.72$
$\lambda \rightarrow 14 \quad 0.66$
$\lambda \rightarrow 13.7 \quad 0 . .67$
$\mathrm{K}_{\text {st }}=0.67$
$\mathrm{A}=0.1 \times 1=0.1 \mathrm{~m}^{2}<0.2 \mathrm{~m}^{2}$
$\mathrm{K}_{\mathrm{A}}=1$
$\mathrm{K}_{\text {sh }}=1.06$
$\sigma_{\text {per modified }}=0.96 \times 0.67 \times 1 \times 1.06=0.68 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\text {act }}\left[0.1885 \mathrm{~N} / \mathrm{mm}^{2}\right]<1.25\left(\sigma_{\text {per }}\right) \rightarrow\left[0.851 \mathrm{~N} / \mathrm{mm}^{2}\right]$
4) Design an exterior wall of height 4 m , unstiffened and supports a flexible slab 150 mm thick with unit weight $12 \mathrm{kN} / \mathrm{m}^{3}$. The length of the slab is 4 m .
Load from slab $=2 \times 0.15 \times 12=3.6 \mathrm{kN} / \mathrm{m}$
Self weight of wall $=0.2 \times 4 \times 20=16 \mathrm{kN} / \mathrm{m}$
Total $=\underline{19.6} \mathrm{kN} / \mathrm{m}$
$e=t_{w} / 6=200 / 6=25 \mathrm{~mm}$
$M=P \times e=19.6 \times 10^{3} \times 25=6.53 \times 10^{5} \mathrm{Nmm}$
$Z=\frac{b . t^{2}}{6}=\frac{1000 \times 200^{2}}{6}=6.67 \times 10^{6} \mathrm{~mm}^{3}$
$\sigma_{\text {act }}=\frac{P}{A}+\frac{M}{Z}=0.098+0.097=0.195 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{H}_{\text {eff }}=0.75 \mathrm{H}=3 \mathrm{~m}$
Assuming M1 mortar and brick of compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$,
$\lambda=\frac{3000}{200}=15$
$\lambda \rightarrow 14 \quad 0.7$
$\lambda \rightarrow 16 \quad 0.63$
$\lambda \rightarrow 15 \quad 0.35+0.315=0 . .665$
$\mathrm{K}_{\mathrm{st}}=0.665$
$\mathrm{A}=0.1 \times 1=0.1 \mathrm{~m}^{2}<0.2 \mathrm{~m}^{2}$
$K_{A}=1$
$\mathrm{K}_{\text {sh }}=1.06$
$\sigma_{\text {per modified }}=0.96 \times 0.665 \times 1 \times 1.06=0.677 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\text {act }}\left[0.195 \mathrm{~N} / \mathrm{mm}^{2}\right]<1.25\left(\sigma_{\text {per }}\right) \rightarrow\left[0.846 \mathrm{~N} / \mathrm{mm}^{2}\right]$

